NY8B062E

14 I/O + 12-通道 ADC 8 位 EPROM-Based 单片机

Version 1.2
Feb. 28, 2023
改版记录

<table>
<thead>
<tr>
<th>版本</th>
<th>日期</th>
<th>内容描述</th>
<th>修正页</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.0</td>
<td>2021/01/18</td>
<td>预发布版本。</td>
<td>-</td>
</tr>
<tr>
<td>1.1</td>
<td>2021/07/16</td>
<td>新增 PWM4 描述。</td>
<td>8, 9, 10, 12, 17, 28, 45, 100</td>
</tr>
<tr>
<td>1.2</td>
<td>2023/02/28</td>
<td>更正错误</td>
<td>12, 69, 80</td>
</tr>
</tbody>
</table>
目录

1. 概述 ...8
 1.1 功能 ..8
 1.2 NY8B062E 与 NY8B062D 的主要差异 ...10
 1.2 系统框图 ..11
 1.3 引脚图 ...11
 1.4 引脚说明 ..12

2. 内存结构 ..14
 2.1 程序存储器 ...14
 2.2 数据存储器 ...15

3. 功能概述 ..18
 3.1 R-page 特殊功能寄存器 ...18
 3.1.1 INDF（间接寻址寄存器） ...18
 3.1.2 TMR0（定时器 0 寄存器） ...18
 3.1.3 PCL（程序计数器低字节） ...18
 3.1.4 STATUS（状态寄存器） ..18
 3.1.5 FSR（数据指针寄存器） ...19
 3.1.6 PortA（PortA 数据寄存器） ..19
 3.1.7 PortB（PortB 数据寄存器） ...20
 3.1.8 PCON（Power 寄存器） ..20
 3.1.9 BWUCON（PortB 唤醒控制寄存器） ...20
 3.1.10 PCHBUF（程序计数器高字节） ..21
 3.1.11 ABPLCON（PortA/PortB 下拉电阻控制寄存器） ...21
 3.1.12 BPHCON（PortB 上拉电阻控制寄存器） ..21
 3.1.13 INTE（中断使能寄存器） ..22
 3.1.14 INTF（中断标志寄存器） ...22
 3.1.15 ADMD（ADC 模式寄存器） ..23
 3.1.16 ADR（ADC 时钟，ADC中断标志位与ADC转换结果低四位数据寄存器）24
 3.1.17 ADD（ADC 输出数据寄存器） ..25
 3.1.18 ADVREFH（ADC 参考电压寄存器） ..25
 3.1.19 ADCR（ADC 采样时间与 ADC 位数寄存器） ..25
 3.1.20 AWUCON（PortA 唤醒控制寄存器） ..25
3.1.21 PACON（ADC引脚模拟控制寄存器） ... 26
3.1.22 ADJMD（ADC校准模式） .. 26
3.1.23 INTEDG（外部中断控制寄存器） ... 26
3.1.24 TMRH（定时器1/2高字节寄存器） ... 27
3.1.25 ANAEN（比较器使能寄存器） ... 27
3.1.26 RFC（电阻频率转换控制寄存器） ... 28
3.1.27 TM3RH（定时器3高字节寄存器） ... 28
3.1.28 INTE2（第2中断屏蔽寄存器） .. 29
3.2 T0MD（定时器0控制寄存器） ... 29

3.3 F-page 特殊功能寄存器 ... 30
 3.3.1 IOSTA（PortA I/O控制寄存器） ... 30
 3.3.2 IOSTB（PortB I/O控制寄存器） ... 30
 3.3.3 APHCON（PortA上拉电阻控制寄存器） .. 31
 3.3.4 PS0CV（预分频器0寄存器） ... 31
 3.3.5 BODCON（PortB开漏控制寄存器） ... 31
 3.3.6 CMPCR（比较器控制寄存器） ... 31
 3.3.7 PCON1（Power控制寄存器） .. 32

3.4 S-page 特殊功能寄存器 ... 33
 3.4.1 TMR1（定时器1寄存器） ... 33
 3.4.2 T1CR1（定时器1控制寄存器1） ... 33
 3.4.3 T1CR2（定时器1控制寄存器2） ... 34
 3.4.4 PWM1DUTY（PWM1占空比寄存器） ... 35
 3.4.5 PS1CV（预分频器1寄存器） ... 35
 3.4.6 BZ1CR（蜂鸣器1控制寄存器） ... 35
 3.4.7 ICR2（IR控制寄存器） .. 36
 3.4.8 TBHP（表格指针高字节寄存器） ... 37
 3.4.9 TBHD（表格数据高字节寄存器） ... 37
 3.4.10 TMR2（定时器2寄存器） .. 37
 3.4.11 T2CR1（定时器2控制寄存器1） ... 38
 3.4.12 T2CR2（定时器2控制寄存器2） ... 39
 3.4.13 PWM2DUTY（PWM2占空比寄存器） .. 39
 3.4.14 PS2CV（预分频器2寄存器） ... 40
 3.4.15 BZ2CR（蜂鸣器2控制寄存器） ... 40
 3.4.16 OSCCR（振荡器控制寄存器） ... 41
 3.4.17 TMR3（定时器3寄存器） .. 42
3.15 看门狗定时器 (WDT) ... 42
3.16 中断 .. 43
 3.16.1 Timer0 上溢中断 ... 43
 3.16.2 Timer1 下溢中断 ... 43
 3.16.3 Timer2 下溢中断 ... 43
 3.16.4 Timer3 下溢中断 ... 43
 3.16.5 看门狗超时中断 ... 44
 3.16.6 PA/PB输入状态改变中断 .. 44
 3.16.7 外部中断0 输入 ... 45
 3.16.8 外部中断1 输入 ... 45
 3.16.9 低电压侦测中断 ... 45
 3.16.10 比较器输出翻转中断 ... 45
3.17 电压比较器 .. 46
3.18 低电压侦测 (LVD) ... 46
3.19 异常中断 .. 47

3.5 I/O Port .. 48
 3.5.1 IO 引脚结构框图 ... 48
3.6 定时器 0 .. 49
3.7 定时器 1/PWM1/Buzzer1 ... 50
3.8 定时器 2/PWM2/Buzzer2 ... 51
3.9 定时器 3/PWM3/Buzzer3/PWM4 .. 52
3.10 RFC（电阻/频率转换器模式） ... 53
3.11 IR 载波 ... 54
3.12 低电压侦测（LVD） ... 55
3.13 电压比较器 .. 56
3.14 ADC模数转换器 ... 57
 3.14.1 ADC参考电压 ... 57
 3.14.2 ADC模拟输入通道 .. 58
 3.14.3 ADC时钟（ADCLK），采样时钟（SHCLK）与位数选择 .. 59
 3.14.4 ADC操作顺序 ... 60
3.15 看门狗定时器（WDT） ... 61
3.16 中断 .. 61
 3.16.1 Timer0 上溢中断 ... 62
 3.16.2 Timer1 下溢中断 ... 62
 3.16.3 Timer2 下溢中断 ... 62
 3.16.4 Timer3 下溢中断 ... 62
 3.16.5 看门狗超时中断 ... 63
 3.16.6 PA/PB输入状态改变中断 .. 63
 3.16.7 外部中断0 输入 ... 64
 3.16.8 外部中断1 输入 ... 64
 3.16.9 低电压侦测中断 ... 64
 3.16.10 比较器输出翻转中断 ... 64
3.17 电压比较器 .. 65
3.18 低电压侦测 (LVD) ... 66
3.19 异常中断 .. 66

3.4.18 T3CR1（定时器3控制寄存器1） ... 40
3.4.19 T3CR2（定时器3控制寄存器2） ... 41
3.4.20 PWM3DUTY（PWM3占空比寄存器） 41
3.4.21 PS3CV（预分频器3寄存器） ... 42
3.4.22 BZ3CR（蜂鸣器3控制寄存器） .. 42
3.4.23 P4CR1（PWM4控制寄存器） ... 43
3.4.24 PWM4DUTY（PWM4占空比寄存器） 43
3.5 I/O Port .. 44
 3.5.1 IO 引脚结构框图 ... 44
3.6 定时器 0 .. 45
3.7 定时器 1/PWM1/Buzzer1 ... 46
3.8 定时器 2/PWM2/Buzzer2 ... 47
3.9 定时器 3/PWM3/Buzzer3/PWM4 .. 48
3.10 RFC（电阻/频率转换器模式） ... 49
3.11 IR 载波 ... 50
3.12 低电压侦测（LVD） ... 51
3.13 电压比较器 .. 52
3.14 ADC模数转换器 ... 53
 3.14.1 ADC参考电压 ... 53
 3.14.2 ADC模拟输入通道 .. 54
 3.14.3 ADC时钟（ADCLK），采样时钟（SHCLK）与位数选择 .. 55
 3.14.4 ADC操作顺序 ... 56
3.15 看门狗定时器（WDT） ... 57
3.16 中断 .. 57
 3.16.1 Timer0 上溢中断 ... 58
 3.16.2 Timer1 下溢中断 ... 58
 3.16.3 Timer2 下溢中断 ... 58
 3.16.4 Timer3 下溢中断 ... 58
 3.16.5 看门狗超时中断 ... 59
 3.16.6 PA/PB输入状态改变中断 .. 59
 3.16.7 外部中断0 输入 ... 60
 3.16.8 外部中断1 输入 ... 60
 3.16.9 低电压侦测中断 ... 60
 3.16.10 比较器输出翻转中断 ... 60
3.16.11 ADC模数转换完成中断 ... 75
3.17 振荡器配置 .. 75
3.18 工作模式 ... 78
 3.18.1 正常模式 ... 79
 3.18.2 慢速模式 ... 79
 3.18.3 待机模式 ... 79
 3.18.4 睡眠模式 ... 80
 3.18.5 唤醒稳定时间 ... 80
 3.18.6 工作模式概述 ... 80
3.19 复位 ... 81

4. 指令设置 ... 83

5. 配置字节表 .. 99

6. 电气特性 .. 101
 6.1 最大绝对值 ... 101
 6.2 直流电气特性 ... 101
 6.3 OSC电气特性 ... 103
 6.4 比较器/LVD电气特性 ... 103
 6.5 ADC电气特性 ... 103
 6.6 特性曲线图 ... 104
 6.6.1 高速RC振荡频率(I_HRC)及低速RC振荡频率(I_LRC)与电源电压(VDD)曲线图 ... 104
 6.6.2 高速RC振荡频率(I_HRC)与温度曲线图 ... 104
 6.6.3 低速RC振荡频率(I_LRC)与温度曲线图 ... 105
 6.6.4 内部参考电压LDO与温度曲线图 .. 105
 6.6.5 内部上拉电阻与电源电压(VDD)曲线图 ... 106
 6.6.6 VIH/VIL与电源电压(VDD)曲线图 ... 106
 6.7 建议工作电压 ... 107
 6.8 LVR电压与温度曲线图 ... 108
 6.9 LVD电压与温度曲线图 ... 108
 6.10 LDO与温度曲线图 ... 109

7. 晶圆脚位图 .. 109

8. 封装尺寸 ... 110
 8.1 8引脚SOP（150 毫寸） ... 110
8.2 14 引脚SOP（150 毫寸）.. 110
8.3 16 引脚SOP（150 毫寸）.. 111

9. 订购信息 .. 111
1. 概述

NY8B062E是以EPROM作为存储器的8位单片机，专为家电或量测等等的I/O应用设计。采用CMOS制程并同时提供客户低成本、高性能、及高性价比等显著优势。NY8B062E核心建立在RISC精简指令集架构可以很容易地做编程和控制，共有55条指令。除了少数指令需要2个指令时钟，大多数指令都是1个指令时钟能完成，可以让用户轻松地以过程控制完成不同的应用。因此非常适合各种中低记忆容量但又复杂的应用。

NY8B062E内建高精度十一加一通道12位ADC模数转换器，与高精度电压比较器，足以应付各种模拟接口的侦测与量测。

在I/O的资源方面，NY8B062E有14根弹性的双向I/O脚，每个I/O脚都有单独的寄存器控制为输入或输出脚。而且每一个I/O脚位都能通过控制相关的寄存器达成如上拉或下拉电阻或开漏（Open-Drain）输出。此外针对红外线遥控的产品方面，NY8B062E内置了可选择频率的红外载波发射口。

NY8B062E有四组定时器，可用系统时钟当作一般的计时应用或者从外部讯号触发来计数。另外NY8B062E提供4组10位的PWM输出，3组蜂鸣器输出，可用来驱动马达、LED、或蜂鸣器等等。

NY8B062E采用双时钟机制，高速振荡时钟或者低速振荡时钟都由内部RC振荡或外部晶振输入。在双时钟机制下，NY8B062E可选择多种工作模式如正常模式（Normal）、慢速模式（Slow mode）、待机模式（Standby mode）与睡眠模式（Halt mode），可节省电力消耗，延长电池寿命。并且单片机在使用内部RC高速振荡时，低速振荡可以同时使用外部精准的晶振计时。可以维持高速处理同时又能精准计算真实时间。

在省电的模式下，如待机模式（Standby mode）与睡眠模式（Halt mode）中，有多个中断源可以触发来唤醒NY8B062E进入正常操作模式（Normal mode）或慢速模式（Slow mode）来处理突发事件。

1.1 功能

- 宽广的工作电压:
 - 2.0V ~ 5.5V @系统时钟 \(\leq 8\) MHz。
 - 2.2V ~ 5.5V @系统时钟 \(> 8\) MHz。

- 宽广的工作温度：\(-40^\circ\text{C} \sim 85^\circ\text{C}\)。

- 2Kx14 位的程序存储器空间。

- 128 字节的通用数据存储器空间。

- 14 根可分别单独控制输入输出方向的I/O脚（GPIO）、PA[7:0]、PB[5:0]。

- PA[5,3:0]及PB[3:0]可选择输入时使用内部下拉电阻。

- PA[7:0]及PB[5:0]可选择输入时使用内部上拉电阻。

- PB[5:0]可选择开漏输出（Open-Drain）。

- PA[5]可选择当作输入或开漏输出（Open-Drain）。

- 所有I/O脚输出可选择一般灌电流（Normal Sink Current）或大灌电流（Large Sink Current），除PA5外。

- 8 级深度硬件堆栈（Stack）。
- 存取数据有直接或间接寻址模式。
- 一组 8 位数定时器（Timer0）包含可编程的预分频器。
- 三组 10 位数定时器（Timer1、2、3）可选自动重载或连续下数计时。
- 四个 10 位的脉冲宽度调变输出（PWM1、2、3、4）。
- 三个蜂鸣器输出（BZ1、2、3）。
- 38/57KHz红外线载波（IR）频率可供选择，同时载波之极性也可以通过寄存器选择。
- 内置准确的低电压侦测电路（LVD）。
- 内置十一加一通道 12 位ADC模数转换器（Analog to Digital Converter）。
- 内置精准的电压比较器（Voltage Comparator）。
- 内置上电复位电路（POR）。
- 内置低压复位功能（LVR）。
- 内置看门狗计时（WDT），可由配置字节（Configuration Word）控制开/关。
- 内置电阻/频率转换器（RFC）功能。
- 双时钟机制，系统时钟可以随时切换高速振荡或者低速振荡。
 - 高速振荡时钟：E_HXT（超过 6MHz外部高速晶振）
 - E_XT（455K~6MHz外部晶振）
 - I_HRC（1~20MHz内部高速RC振荡）
 - 低速振荡时钟：E_LXT（32KHz外部低速晶振）
 - I_LRC（内部 32KHz 低速 RC 振荡）
- 四种工作模式可随系统需求调整电流消耗：正常模式（Normal mode）、慢速模式（Slow mode）、待机模式（Standby mode）与睡眠模式（Halt mode）。
- 十一种硬件中断：
 - Timer0 上溢中断。
 - Timer1 下溢中断。
 - Timer2 下溢中断。
 - Timer3 下溢中断。
 - WDT中断。
 - PA/PB输入状态改变中断。
 - 两组外部中断。
 - 低电压侦测中断。
 - 比较器输出翻转中断。
 - ADC模数转换完成中断。
- NY8B062E在待机模式（Standby mode）下的十一种唤醒中断：
 - Timer0 上溢中断。
Timer1 下溢中断。
Timer2 下溢中断。
Timer3 下溢中断。
WDT中断。
PA/PB输入状态改变中断。
两组外部中断。
低电压侦测中断。
比较器输出翻转中断。
ADC模数转换完成中断。

NY8B062E在睡眠模式（Halt mode）下的四种唤醒中断:
WDT中断。
PA/PB输入状态改变中断。
两组外部中断。

1.2 NY8B062E 与 NY8B062D的主要差异

<table>
<thead>
<tr>
<th>项目</th>
<th>功能</th>
<th>NY8B062E</th>
<th>NY8B062D</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>ADC 偏移校准*</td>
<td>Yes</td>
<td>---</td>
</tr>
<tr>
<td>2</td>
<td>ADC 耗电</td>
<td>500uA @5V</td>
<td>3mA @5V</td>
</tr>
<tr>
<td>3</td>
<td>内部 LDO</td>
<td>±0.5%</td>
<td>±1.0%</td>
</tr>
<tr>
<td>4</td>
<td>输入施密特触发</td>
<td>开启/关闭</td>
<td>---</td>
</tr>
<tr>
<td>5</td>
<td>PWM 通道</td>
<td>PWM1, 2, 3, 4</td>
<td>PWM1, 2, 3</td>
</tr>
</tbody>
</table>

*注：需要增加 ADC 零点校准初始化程式 (可参考 NYIDE 范例程式)
1.2 系统框图

NY8B062E提供三种封装类型：SOP16, SOP14 及 SOP8。

图 1 封装引脚图
1.4 引脚说明

<table>
<thead>
<tr>
<th>引脚名</th>
<th>I/O</th>
<th>描述</th>
</tr>
</thead>
<tbody>
<tr>
<td>PA0 AIN0 VREFH</td>
<td>I/O</td>
<td>PA0 是一个双向I/O引脚，也可当作比较器输入引脚。PA0可作ADC的模拟输入引脚AIN0。PA0可作ADC外部参考电压输入引脚VREFH。</td>
</tr>
<tr>
<td>PA1 AIN1 EX_CKI1</td>
<td>I/O</td>
<td>PA1是一个双向I/O引脚，也可当作比较器输入引脚。PA1可作ADC的模拟输入引脚AIN1。PA1可作定时器2/3外部时钟来源EX_CKI1。</td>
</tr>
<tr>
<td>PA2 AIN2 PWM3/BZ3 SDI</td>
<td>I/O</td>
<td>PA2是一个双向I/O引脚，也可当作比较器输入引脚。PA2可作ADC的模拟输入引脚AIN2。PA2可输出PWM3或BZ3。PA2也是编程数据输入SDI。</td>
</tr>
<tr>
<td>PA3 AIN3 PWM4 SDO</td>
<td>I/O</td>
<td>PA3是一个双向I/O引脚，也可当作比较器输入引脚。PA3可作ADC的模拟输入引脚AIN3。PA3可输出PWM4。PA3也是编程数据输出SDO。</td>
</tr>
<tr>
<td>PA4 AIN4 PWM2 EX_CKI0 SCK</td>
<td>I/O</td>
<td>PA4是一个双向I/O引脚。PA4可作ADC的模拟输入引脚AIN4。PA4可输出PWM2。PA4可作定时器0/1外部时钟来源EX_CKI0。PA4也是编程时钟输入SCK。</td>
</tr>
<tr>
<td>PA5 RSTb Vpp</td>
<td>I/O</td>
<td>PA5可以是输入或是开漏输出脚。PA5可当作复位引脚RSTb。如果Vpp电压高于7.75V，IC会进入EPROM编程模式。</td>
</tr>
<tr>
<td>PA6 Xin</td>
<td>I/O</td>
<td>PA6是一个双向I/O引脚。PA6可当作晶振输入引脚Xin。</td>
</tr>
<tr>
<td>PA7 PWM4 Xout</td>
<td>I/O</td>
<td>PA7是一个双向I/O引脚。PA7可输出PWM4。PA7可作晶振输出引脚Xout。PA7也可以当成指令时钟输出。</td>
</tr>
<tr>
<td>PB0 AIN5 INTO</td>
<td>I/O</td>
<td>PB0是一个双向I/O引脚。PB0可作ADC的模拟输入引脚AIN5。PB0可当作外部中断0的输入引脚INT0。</td>
</tr>
<tr>
<td>PB1 AIN6 IR INT1</td>
<td>I/O</td>
<td>PB0是一个双向I/O引脚。PB0可作ADC的模拟输入引脚AIN5。如果开启IR模式，此脚可作IR载波输出。PB0可当作外部中断0的输入引脚INT0。</td>
</tr>
<tr>
<td>PB2 AIN7 PWM2/BZ2</td>
<td>I/O</td>
<td>PB2是一个双向I/O引脚。PB2可作ADC的模拟输入引脚AIN7。PB2可输出PWM2或BZ2。</td>
</tr>
<tr>
<td>引脚名</td>
<td>I/O</td>
<td>描述</td>
</tr>
<tr>
<td>-------</td>
<td>-----</td>
<td>------</td>
</tr>
<tr>
<td>PB3 AIN8</td>
<td>I/O</td>
<td>PB3 是一个双向I/O引脚。PB3 可作ADC的模拟输入引脚AIN8。PB3 可输出PWM1或BZ1。PB3 可作比较器输出脚。PB3 也是编程数据输出SDO。</td>
</tr>
<tr>
<td>PB4 AIN9</td>
<td>I/O</td>
<td>PB4 是一个双向I/O引脚。PB4 可作ADC的模拟输入引脚AIN9。</td>
</tr>
<tr>
<td>PB5 AIN10</td>
<td>I/O</td>
<td>PB5 是一个双向I/O引脚。PB5 可作ADC的模拟输入引脚AIN10。</td>
</tr>
<tr>
<td>VDD</td>
<td>-</td>
<td>电源正端。</td>
</tr>
<tr>
<td>VSS</td>
<td>-</td>
<td>电源负端。</td>
</tr>
</tbody>
</table>
2. 内存结构

NY8B062E存储器分为两类：分别是程序存储器和数据存储器。

2.1 程序存储器

NY8B062E程序存储器空间是2Kx14位。因此，11位宽的程序计数器（PC）可以访问程序存储器的任何地址。程序存储器的一些位置保留给中断入口。复位地址位于0x000，软件中断地址位于0x001，内部和外部硬件中断地址位于0x008。

NY8B062E提供GOTOA和CALLA指令去访问程序空间的256个地址。还提供LCALL和LGOTO指令访问程序空间的任何地址。

当发生子程序调用或中断情况时，下一个ROM地址写入堆栈的顶部。而当执行RET、RETI或RETI指令，堆栈顶部的数据会被读取并加载到程序计数器。

NY8B062E程序存储器地址0x7FE~0x7FF是保留地址。如果用户在这些地址写入程序可能会发生无法预期的程序执行错误。

NY8A062E程序存储器地址0x00E~0x00F是Preset Rolling Code地址。如果用户在不设置滚码时可当作程序区使用。

图2 程序存储器对应地址
2.2 数据存储器

根据用于存取数据存储器的指令，数据存储器可分为三类：

- **R-page** 特殊功能寄存器 (SFR) 和通用寄存器 (GPR)。
- **F-page** 特殊功能寄存器。
- **S-page** 特殊功能寄存器。GPR 由 SRAM 组成，用户可以使用它们来存储变量或计算结果。

R-page 特殊功能寄存器和数据存储器分为四组 Bank，可透过数据指针寄存器 (FSR) 来切换 Bank。寄存器 BK[1:0] 为 STATUS[7:6]，可从四个 Bank 中选择其中一个。

R-page 特殊功能寄存器和数据存储器可用直接寻址方式和间接寻址方式来进行存取。

![间接寻址方式存取数据存储器](image)

图 3 间接寻址方式存取数据存储器

![直接寻址方式存取数据存储器](image)

图 4 直接寻址方式存取数据存储器

R-page 特殊功能寄存器可以通过一般的指令存取，如算术指令和数据搬移指令。R-page 特殊功能寄存器占用了从 Bank 0 的 0x0 到 0x1F。然而，Bank 1、Bank 2 和 Bank 3 的相同地址会映像到 Bank 0。换句话说，R-page 特殊功能寄存器只存在于 Bank 0。GPR 占用了 Bank 0 数据存储器的 0x20 到 0x7F 与 Bank 1 数据存储器的 0x20 到 0x3F，另一个 bank 从 0x20 到 0x7F 映像如表 1 所示。
NY8B062E寄存器名称和R-page特殊功能寄存器的映像地址说明如下表。

<table>
<thead>
<tr>
<th>地址</th>
<th>Status [7:6]</th>
<th>00 (Bank 0)</th>
<th>01 (Bank 1)</th>
<th>10 (Bank 2)</th>
<th>11 (Bank 3)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>INDF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1</td>
<td>TMR0</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x2</td>
<td>PCL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x3</td>
<td>STATUS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x4</td>
<td>FSR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x5</td>
<td>PORTA</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x6</td>
<td>PORTB</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x7</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x8</td>
<td>PCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x9</td>
<td>BWUUCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xA</td>
<td>PCHBUF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xB</td>
<td>ABPLCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xC</td>
<td>BPHCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xD</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xE</td>
<td>INTE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0xF</td>
<td>INTF</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x10</td>
<td>ADMC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x11</td>
<td>ADDR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x12</td>
<td>ADD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x13</td>
<td>ADVREFH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x14</td>
<td>ADCR</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x15</td>
<td>AWUUCON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x16</td>
<td>PACON</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x17</td>
<td>ADJMD</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x18</td>
<td>INTEDG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x19</td>
<td>TMRH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1A</td>
<td>ANAEN</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1B</td>
<td>RFC</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1C</td>
<td>TM3RH</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1D ~0x1E</td>
<td>-</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x1F</td>
<td>INTE2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0x20 ~ 0x3F</td>
<td>通用寄存器</td>
<td>通用寄存器</td>
<td>映射至bank 0</td>
<td>映射至bank 1</td>
<td></td>
</tr>
<tr>
<td>0x40 ~ 0x7F</td>
<td>通用寄存器</td>
<td>映射至bank 0</td>
<td>映射至bank 0</td>
<td>映射至bank 0</td>
<td></td>
</tr>
</tbody>
</table>

表1 R-page特殊功能寄存器地址映像表
F-page特殊功能寄存器只能被指令 IOST和IOSTR存取，S-page特殊功能寄存器只能被指令 SFUN和SFUNR存取。当 F-page和S-page寄存器被存取时，STATUS[7:6]选择位会被忽略。寄存器名称和F-page、S-page的地址说明如下表。

<table>
<thead>
<tr>
<th>地址</th>
<th>特殊功能寄存器种类</th>
<th>F-page SFR</th>
<th>S-page SFR</th>
</tr>
</thead>
<tbody>
<tr>
<td>0x0</td>
<td>-</td>
<td>TMR1</td>
<td></td>
</tr>
<tr>
<td>0x1</td>
<td>-</td>
<td>T1CR1</td>
<td></td>
</tr>
<tr>
<td>0x2</td>
<td>-</td>
<td>T1CR2</td>
<td></td>
</tr>
<tr>
<td>0x3</td>
<td>-</td>
<td>PWM1DUTY</td>
<td></td>
</tr>
<tr>
<td>0x4</td>
<td>-</td>
<td>PS1CV</td>
<td></td>
</tr>
<tr>
<td>0x5</td>
<td>IOSTA</td>
<td>BZ1CR</td>
<td></td>
</tr>
<tr>
<td>0x6</td>
<td>IOSTB</td>
<td>IRCR</td>
<td></td>
</tr>
<tr>
<td>0x7</td>
<td>-</td>
<td>TBHP</td>
<td></td>
</tr>
<tr>
<td>0x8</td>
<td>-</td>
<td>TBHD</td>
<td></td>
</tr>
<tr>
<td>0x9</td>
<td>APHCON</td>
<td>TMR2</td>
<td></td>
</tr>
<tr>
<td>0xA</td>
<td>PS0CV</td>
<td>T2CR1</td>
<td></td>
</tr>
<tr>
<td>0xB</td>
<td>-</td>
<td>T2CR2</td>
<td></td>
</tr>
<tr>
<td>0xC</td>
<td>BODCON</td>
<td>PWM2DUTY</td>
<td></td>
</tr>
<tr>
<td>0xD</td>
<td>-</td>
<td>PS2CV</td>
<td></td>
</tr>
<tr>
<td>0xE</td>
<td>CMPCR</td>
<td>BZ2CR</td>
<td></td>
</tr>
<tr>
<td>0xF</td>
<td>PCON1</td>
<td>OSCR</td>
<td></td>
</tr>
<tr>
<td>0X10</td>
<td>-</td>
<td>TMR3</td>
<td></td>
</tr>
<tr>
<td>0X11</td>
<td>-</td>
<td>T3CR1</td>
<td></td>
</tr>
<tr>
<td>0X12</td>
<td>-</td>
<td>T3CR2</td>
<td></td>
</tr>
<tr>
<td>0X13</td>
<td>-</td>
<td>PWM3DUTY</td>
<td></td>
</tr>
<tr>
<td>0X14</td>
<td>-</td>
<td>PS3CV</td>
<td></td>
</tr>
<tr>
<td>0X15</td>
<td>-</td>
<td>BZ3CR</td>
<td></td>
</tr>
<tr>
<td>0X16</td>
<td>-</td>
<td>P4CR1</td>
<td></td>
</tr>
<tr>
<td>0X17</td>
<td>-</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0X18</td>
<td>-</td>
<td>PWM4DUTY</td>
<td></td>
</tr>
</tbody>
</table>

表 2 F-page特殊功能寄存器和S-page特殊功能寄存器地址表
3. 功能概述
本章节将详细描述NY8B062E的操作方式。

3.1 R-page特殊功能寄存器

3.1.1 INDF（间接寻址寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INDF</td>
<td>R</td>
<td>0x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

间接寻址寄存器并不是真的存在，而是以间接寻址模式来使用。任何指令访问间接寻址寄存器时，实际上是访问数据指针寄存器FSR所选择的寄存器。

3.1.2 TMR0（定时器 0 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR0</td>
<td>R</td>
<td>0x1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

当读取TMR0寄存器时，会得到定时器 0 目前计数数值。
当写入TMR0寄存器时，会更新定时器 0 目前计数数值。

藉由设置T0MD与配置字节(Configuration Word)，定时器 0 时钟源可以从指令时钟FINST、外部时钟EX_CKI0或低频振荡器I_LRC/E_LXT中择一。

3.1.3 PCL（程序计数器低字节）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCL</td>
<td>R</td>
<td>0x2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

程序计数器（PC）是一个 11 位寄存器，分离 3 位和低 8 位。当程序执行了一个指令，同时PC数值会增加，除了某些指令会直接更改PC数值。PCL寄存器可存取PC低字节（PC[7:0]），PC高字节（PC[10:8]）并不能直接存取，必须藉由PCHBUF寄存器完成存取。

LGOTO指令的PC[10:0]是从指令码取得。
LCALL指令的PC[10:0]是从指令码取得，下一个PC地址（PC+1），将被存到堆栈的顶部。

3.1.4 STATUS（状态寄存器）
状态寄存器包含算术/逻辑指令的结果和是否发生看门狗超时复位。

C: 进位/借位标志位。
- C=1 时，加法运算有进位或减法运算无借位。
- C=0 时，加法运算无进位或减法运算有借位。

DC: 半进位/半借位标志位。
- DC=1 时，加法运算低四位有进位或减法运算时没有向高四位借位。
- DC=0 时，加法运算低四位无进位或减法运算时有向高四位借位。

Z: 零位。
- Z=1 时，算术或逻辑运算的结果是零。
- Z=0 时，算术或逻辑运算的结果不为零。

/PD: 睡眠模式标志位。
- /PD=1 时，上电或执行CLRWD指令后。
- /PD=0 时，执行SLEEP指令后。

/TO: 看门狗超时标志位。
- /TO=1 时，上电或执行CLRWD或SLEEP指令后。
- /TO=0 时，发生WDT上溢。

GP5: 通用寄存器数据位。

BK[1:0]: Bank选择位，BK[1:0]=00b选择Bank0，BK[1:0]=01b选择Bank1，BK[1:0]=10b选择Bank2。
- BK[1:0]=11b，选择Bank3。

(1) 可以被SLEEP指令清除。
(2) 可以由CLRWD指令设定。

3.1.5 FSR（数据指针寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>FSR</td>
<td>R</td>
<td>0x4</td>
<td>GP7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>读/写属性</th>
<th>读/写属性</th>
</tr>
</thead>
<tbody>
<tr>
<td>初始值</td>
<td>0 X X X X X</td>
</tr>
</tbody>
</table>

FSR[6:0]: 从指定Bank数据存储器的128个寄存器中选择一个。

GP7: 通用寄存器数据位。

3.1.6 PortA（PortA数据寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortA</td>
<td>R</td>
<td>0x5</td>
<td>PA7</td>
<td>PA6</td>
<td>PA5</td>
<td>PA4</td>
<td>PA3</td>
<td>PA2</td>
<td>PA1</td>
<td>PA0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>读/写属性</th>
<th>读/写属性</th>
</tr>
</thead>
<tbody>
<tr>
<td>初始值</td>
<td>数据锁存器值是xxxxxxx，读取值则是xxxxxxx，端口值(PA7~PA0)</td>
</tr>
</tbody>
</table>
读取PortA时，若特定脚位被配置为输入脚，将得到该脚位输入状态。然而，若该脚位被配置为输出脚，依据配置字节选项RD_OPT，得到该脚位的状态或相对应的输出数据锁存值。当写入PortA时，数据是被写入PortA的输出数据锁存器中。

3.1.7 PortB（PortB 数据寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PortB</td>
<td>R</td>
<td>0x6</td>
<td>GP7</td>
<td>GP6</td>
<td>PB5</td>
<td>PB4</td>
<td>PB3</td>
<td>PB2</td>
<td>PB1</td>
<td>PB0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>数据锁存器值是 xxxxxxxx，读取值则是 xxxxxxxx 端口值(PB5~PB0)</td>
<td></td>
</tr>
</tbody>
</table>

读取PortB时，若特定脚位被配置为输入脚，将得到该脚位输入状态。然而，若该脚位被配置为输出脚，依据配置字节选项RD_OPT，得到该脚位的状态或相对应的输出数据锁存值。当写入PortB时，数据是被写入PortB的输出数据锁存器中。

GP7~6：通用寄存器数据位。

3.1.8 PCON（Power 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCON</td>
<td>R</td>
<td>0x8</td>
<td>WDTEN</td>
<td>GP6</td>
<td>LVDEN</td>
<td>/PHPA5</td>
<td>LVREN</td>
<td>GP2</td>
<td>GP1</td>
<td>GP0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

GP6，GP4，GP2，GP1，GP0：通用寄存器数据位。

LVREN：开启/关闭 LVR。

LVREN=1 时，开启LVR。
LVREN=0 时，关闭LVR。

/PHPA5：关闭/开启PA5 上拉电阻。

/PHPA5=1 时，关闭PA5 上拉电阻。
/PHPA5=0 时，开启PA5 上拉电阻。

LVDEN：开启/关闭 LVD。

LVDEN=1 时，开启LVD。
LVDEN=0 时，关闭LVD。

WDTEN：开启/关闭 WDT。

WDTEN=1 时，开启WDT。
WDTEN=0 时，关闭WDT。

3.1.9 BWUCON（PortB 唤醒控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BWUCON</td>
<td>R</td>
<td>0x9</td>
<td>-</td>
<td>-</td>
<td>WUPB5</td>
<td>WUPB4</td>
<td>WUPB3</td>
<td>WUPB2</td>
<td>WUPB1</td>
<td>WUPB0</td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

GP7~6：通用寄存器数据位。

LVREN：开启/关闭 LVR。

LVREN=1 时，开启LVR。
LVREN=0 时，关闭LVR。

/PHPA5：关闭/开启PA5 上拉电阻。

/PHPA5=1 时，关闭PA5 上拉电阻。
/PHPA5=0 时，开启PA5 上拉电阻。

LVDEN：开启/关闭 LVD。

LVDEN=1 时，开启LVD。
LVDEN=0 时，关闭LVD。

WDTEN：开启/关闭 WDT。

WDTEN=1 时，开启WDT。
WDTEN=0 时，关闭WDT。
初始值 | X | X | 1 | 1 | 1 | 1 | 1 | 1 | 1

WUPBx：开启/关闭PBx唤醒功能，$0 \leq x \leq 5$。
- WUPBx=1 时，开启PBx唤醒功能。
- WUPBx=0 时，关闭PBx唤醒功能。

3.1.10 PCHBUF（程序计数器高字节）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCHBUF</td>
<td>R</td>
<td>0xA</td>
<td>-</td>
<td>XSPD_STP</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>PCHBUF[2:0]</td>
</tr>
</tbody>
</table>

| 读/写属性 | - | W | - | - | W |
| 初始值 | X | 0 | X | 000 |

PCHBUF[2:0]：程序计数器PC的第十个位到第八个位。

XSPD_STP：写 1 停止外部晶振 32.768KHz 起振强化功能。

3.1.11 ABPLCON（PortA/PortB 下拉电阻控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
</table>

| 读/写属性 | - | W | - | - | W |
| 初始值 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

/PLPAx：关闭/开启PAx下拉电阻，$0 \leq x \leq 3$。
- /PLPAx=1，关闭PAx下拉电阻。
- /PLPAx=0，开启PAx下拉电阻。

/PLPBx：关闭/开启PBx下拉电阻，$0 \leq x \leq 3$。
- /PLPBx=1，关闭PBx下拉电阻。
- /PLPBx=0，开启PBx下拉电阻。

3.1.12 BPHCON（PortB 上拉电阻控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPHCON</td>
<td>R</td>
<td>0xC</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>/PHPB5</td>
<td>/PHPB4</td>
<td>/PHPB3</td>
<td>/PHPB2</td>
<td>/PHPB1</td>
</tr>
</tbody>
</table>

| 读/写属性 | - | - | 读/写 |
| 初始值 | X | X | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

/PHPBx：关闭/开启PBx上拉电阻，$0 \leq x \leq 5$。
- /PHPBx=1，关闭PBx上拉电阻。
- /PHPBx=0，开启PBx上拉电阻。
3.1.13 INTE（中断使能寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTE</td>
<td>R</td>
<td>0xE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 读/写属性 | 读/写 |

初始值（note*） 0 0 0 0 0 0 0 0 0 0

T0IE: 定时器 0 上溢（overflow）中断使能位。
- T0IE=1 时，开启定时器 0 上溢中断。
- T0IE=0 时，关闭定时器 0 上溢中断。

PABIE: PortA / PortB 输入状态变化中断使能位。
- PABIE=1 时，开启 PortA / PortB 输入状态变化中断。
- PABIE=0 时，关闭 PortA / PortB 输入状态变化中断。

INT0IE: 外部中断 0 使能位。
- INT0IE=1 时，开启外部中断 0。
- INT0IE=0 时，关闭外部中断 0。

T1IE: 定时器 1 下溢（underflow）中断使能位。
- T1IE=1 时，开启定时器 1 下溢中断。
- T1IE=0 时，关闭定时器 1 下溢中断。

LVDIE: 低电压侦测中断使能位。
- LVDIE=1 时，开启低电压侦测中断。
- LVDIE=0 时，关闭低电压侦测中断。

T2IE: 定时器 2 下溢（underflow）中断使能位。
- T2IE=1 时，开启定时器 2 下溢中断。
- T2IE=0 时，关闭定时器 2 下溢中断。

WDTIE: WDT 上溢中断使能位。
- WDTIE=1 时，开启 WDT 上溢中断。
- WDTIE=0 时，关闭 WDT 上溢中断。

INT1IE: 外部中断 1 使能位。
- INT1IE=1 时，开启外部中断 1。
- INT1IE=0 时，关闭外部中断 1。

3.1.14 INTF（中断标志寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTF</td>
<td>R</td>
<td>0xF</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 读/写属性 | 读/写 |

初始值（note*） 0 0 0 0 0 0 0 0 0 0
T0IF：定时器0上溢中断标志位。
 T0IF=1时，发生定时器0上溢中断。
 T0IF必须由程序清零。

PABIF：PortA/PortB输入状态变化中断标志位。
 PABIF=1时，发生PortA/PortB输入状态变化中断。
 PABIF必须由程序清零。

INT0IF：外部中断0标志位。
 INT0IF=1时，发生外部0中断。
 INT0IF必须由程序清零。

T1IF：定时器1下溢中断标志位。
 T1IF=1时，发生定时器1下溢中断。
 T1IF必须由程序清零。

LVDIF：低电压侦测中断标志位。
 LVDIF=1时，发生低电压侦测中断。
 LVDIF必须由程序清零。

T2IF：定时器2下溢中断标志位。
 T2IF=1时，发生定时器2下溢中断。
 T2IF必须由程序清零。

WDTIF：WDT超时上溢标志位。
 WDTIF=1时，发生WDT上溢中断。
 WDTIF必须由程序清零。

INT1IF：外部中断1标志位。
 INT1IF=1时，发生外部1中断。
 INT1IF必须由程序清零。

注意：当对应的INTE寄存器控制位未使能，读取中断标志是0。

3.1.15 ADMD（ADC模式寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADMD</td>
<td>R</td>
<td>0x10</td>
<td>ADEN</td>
<td>START</td>
<td>EOC</td>
<td>GCHS</td>
<td>CHS3</td>
<td>CHS2</td>
<td>CHS1</td>
<td>CHS0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>读/写</td>
<td></td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
</tr>
<tr>
<td>初始值</td>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ADEN：开启/关闭ADC功能。
 ADEN=1时，开启ADC功能。

START：ADC转换启动位。
 写1开始执行ADC转换。此位只能写，读取此位将得到0。

EOC：ADC状态位，只读。
EOC=1：ADC转换完成。可由ADR与ADD读取转换结果数据。
EOC=0：ADC转换中。

GCHS：开启/关闭ADC总通道。
 GCHS=0：关闭所有ADC模拟输入通道。
 GCHS=1：开启所有ADC模拟输入通道。

CHS3~0：ADC模拟输入通道选择位。
 0000：选择PA0引脚为模拟输入通道。
 0001：选择PA1引脚为模拟输入通道。
 0010：选择PA2引脚为模拟输入通道。
 0011：选择PA3引脚为模拟输入通道。
 0100：选择PA4引脚为模拟输入通道。
 0101：选择PB0引脚为模拟输入通道。
 0110：选择PB1引脚为模拟输入通道。
 0111：选择PB2引脚为模拟输入通道。
 1000：选择PB3引脚为模拟输入通道。
 1001：选择PB4引脚为模拟输入通道。
 1010：选择PB5引脚为模拟输入通道。
 1011：选择内部1/4 VDD为模拟输入通道。
 1100：选择GND为模拟输入通道。

3.1.16 ADR（ADC 时钟，ADC 中断标志位与 ADC 转换结果低四位数据寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADR</td>
<td>R</td>
<td>0x11</td>
<td>ADIF</td>
<td>ADIE</td>
<td>ADCK1</td>
<td>ADCK0</td>
<td>AD3</td>
<td>AD2</td>
<td>AD1</td>
<td>AD0</td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td>R</td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

ADIF：ADC中断标志位。
 ADIF=1时，发生ADC转换完成中断。
 ADIF必须由程序清零。

ADIE：ADC中断使能位。
 ADIE=1时，开启ADC中断。
 ADIE=0时，关闭ADC中断。

ADCK1~0：ADC时钟选择位。
 00：ADC时钟=FINST/16，01：ADC时钟=FINST/8，10：ADC时钟=FINST/1，11：ADC时钟=FINST/2。

AD3~0：ADC转换结果低四位数据。
3.1.17 ADD（ADC输出数据寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADD</td>
<td>R</td>
<td>0x12</td>
<td>AD11</td>
<td>AD10</td>
<td>AD9</td>
<td>AD8</td>
<td>AD7</td>
<td>AD6</td>
<td>AD5</td>
<td>AD4</td>
</tr>
<tr>
<td>读/写属性</td>
<td>R</td>
</tr>
<tr>
<td>初始值</td>
<td>0</td>
</tr>
</tbody>
</table>

AD11~4：ADC转换结果高八位数据。

3.1.18 ADVREFH（ADC参考电压寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADVREFH</td>
<td>R</td>
<td>0x13</td>
<td>EVHENB</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>VHS1</td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
</tr>
<tr>
<td>初始值</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

EVHENB：ADC参考电压（VREFH）选择控制位。
EVHENB=0：ADC参考电压由内部产生，参考电压水平由VHS1~0决定。
EVHENB=1：ADC参考电压由引脚PA0提供。

VHS1~0：ADC内部参考电压选择位。
11：VREFH=VDD，10：VREFH=4V，01：VREFH=3V，00：VREFH=2V。

3.1.19 ADCR（ADC采样时间与ADC位数寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>Addr</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ADCR</td>
<td>R</td>
<td>0x14</td>
<td>-</td>
<td>PBCON5</td>
<td>PBCON4</td>
<td>PBCON3</td>
<td>SHCK1</td>
<td>SHCK0</td>
<td>ADCR1</td>
<td>ADCR0</td>
</tr>
<tr>
<td>读/写属性</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SHCK1~0：ADC采样时间选择位。
00：1个ADC时钟，01：2个ADC时钟，10：4个ADC时钟，11：8个ADC时钟。

ADCR1~0：ADC位数选择位。
00：8位ADC，01：10位ADC，1x：12位ADC。

PBCONx：PB引脚选择位，3 ≤ x ≤ 5。
0=PBx 作为ADC模拟输入引脚或数字IO引脚。
1=PBx 仅作为ADC模拟输入引脚。

3.1.20 AWUCON（PortA唤醒控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWUCON</td>
<td>R</td>
<td>0x15</td>
<td>WUPA7</td>
<td>WUPA6</td>
<td>WUPA5</td>
<td>WUPA4</td>
<td>WUPA3</td>
<td>WUPA2</td>
<td>WUPA1</td>
<td>WUPA0</td>
</tr>
</tbody>
</table>
WUPAx: 开启/关闭PAx唤醒功能，0 ≤ x ≤ 7。
WUPAx=1 时，开启PAx唤醒功能。
WUPAx=0 时，关闭PAx唤醒功能。

3.1.21 PACON（ADC 引脚数模控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PACON</td>
<td>R</td>
<td>0x16</td>
<td>PBCON2</td>
<td>PBCON1</td>
<td>PBCON0</td>
<td>PACON4</td>
<td>PACON3</td>
<td>PACON2</td>
<td>PACON1</td>
<td>PACON0</td>
</tr>
</tbody>
</table>

初始值
| 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |

PACONx: PA引脚选择位，0 ≤ x ≤ 4。
0=PAx 作为ADC模拟输入引脚或数字IO引脚。
1=PAx 仅作为ADC模拟输入引脚。

PBCONx: PA引脚选择位，0 ≤ x ≤ 2。
0=PBx 作为ADC模拟输入引脚或数字IO引脚。
1=PBx 仅作为ADC模拟输入引脚。

3.1.22 ADJMD（ADC 调校模式）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
</table>

初始值
| X | X | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |

ADJ[x]: 调校位选择，0 ≤ x ≤ 4。
00000: 偏移 0mV
11111: 偏移 12.5mV

ADJ_SIGN: 调校标志位。
0: ADC数据递减。
1: ADC数据递增。

注意: 应用时，请参考NYIDE范例“ADC_Interrupt_AutoK”。

3.1.23 INTEDG（外部中断控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTEDG</td>
<td>R</td>
<td>0x18</td>
<td>-</td>
<td>-</td>
<td>EIS1</td>
<td>EIS0</td>
<td>INT1G1</td>
<td>INT1G0</td>
<td>INT0G1</td>
<td>INT0G0</td>
</tr>
</tbody>
</table>

注意: 应用时，请参考NYIDE范例“ADC_Interrupt_AutoK”。
EIS1: 外部中断 1 引脚选择位。
 EIS1=1 时，PB1 选择为外部中断 1 引脚。
 EIS1=0 时，PB1 选择为GPIO。

EIS0: 外部中断 0 引脚选择位。
 EIS0=1 时，PB0 选择为外部中断 0 引脚。
 EIS0=0 时，PB0 选择为GPIO。

INT1G1~0: INT1 沿触发选择位。
 00: 保留，01: 上升沿触发，10: 下降沿触发，11: 上升/下降沿触发。

INT0G1~0: INT0 沿触发选择位。
 00: 保留，01: 上升沿触发，10: 下降沿触发，11: 上升/下降沿触发。

3.1.24 TMRH（定时器 1/2 高字节寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMRH</td>
<td>R</td>
<td>0x19</td>
<td>TMR29</td>
<td>TMR28</td>
<td>TMR19</td>
<td>TMR18</td>
<td>PWM2 DUTY9</td>
<td>PWM2 DUTY8</td>
<td>PWM1 DUTY9</td>
<td>PWM1 DUTY8</td>
</tr>
<tr>
<td>初始值</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TMR29~8: 定时器 2 高 2 位。写这 2 位将写定时器 2 第 9 位与第 8 位重载值。
读取这 2 位将得到定时器 2 第 9 位与第 8 位目前计数值。

TMR19~8: 定时器 1 高 2 位。写这 2 位将写定时器 1 第 9 位与第 8 位重载值。
读取这 2 位将得到定时器 1 第 9 位与第 8 位目前计数值。

PWM2DUTY9~8: PWM2 占空比高 2 位。
PWM1DUTY9~8: PWM1 占空比高 2 位。

3.1.25 ANAEN（比较器使能寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>ANAEN</td>
<td>R</td>
<td>0x1A</td>
<td>CMPEN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

CMPEN: 开启/关闭 电压比较器。
 CMPEN=1 时，开启电压比较器。
 CMPEN=0 时，关闭电压比较器。
3.1.26 RFC（电阻频率转换控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>RFC</td>
<td>R</td>
<td>0x1B</td>
<td>RFCEN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>PSEL[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

RFCEN：关闭/开启RFC。

RFCEN=1，开启RFC。

RFCEN=0，关闭RFC。

PSEL[3:0]：选择RFC输入引脚。

<table>
<thead>
<tr>
<th>PSEL[3:0]</th>
<th>RFC PAD</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>PA0</td>
</tr>
<tr>
<td>0001</td>
<td>PA1</td>
</tr>
<tr>
<td>0010</td>
<td>PA2</td>
</tr>
<tr>
<td>0011</td>
<td>PA3</td>
</tr>
<tr>
<td>0100</td>
<td>PA4</td>
</tr>
<tr>
<td>0101</td>
<td>PA5</td>
</tr>
<tr>
<td>0110</td>
<td>PA6</td>
</tr>
<tr>
<td>0111</td>
<td>PA7</td>
</tr>
<tr>
<td>1000</td>
<td>PB0</td>
</tr>
<tr>
<td>1001</td>
<td>PB1</td>
</tr>
<tr>
<td>1010</td>
<td>PB2</td>
</tr>
<tr>
<td>1011</td>
<td>PB3</td>
</tr>
<tr>
<td>1100</td>
<td>PB4</td>
</tr>
<tr>
<td>1101</td>
<td>PB5</td>
</tr>
</tbody>
</table>

表3 选择RFC输入引脚

3.1.27 TM3RH（定时器3高字节寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR类型</th>
<th>Addr</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TM3RH</td>
<td>R</td>
<td>0x1C</td>
<td>-</td>
<td>-</td>
<td>TMR39</td>
<td>TMR38</td>
<td>PWM4D9</td>
<td>PWM4D8</td>
<td>PWM3D9</td>
<td>PWM3D8</td>
</tr>
<tr>
<td>读/写属性</td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>-</td>
<td>-</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

TMR39~8：定时器3高2位。写这2位将覆盖定时器3第9位与第8位重载值。

读取这2位将得到定时器3第9位与第8位目前计数值。

PWM4DUTY9~8：PWM4占空比高2位。

PWM3DUTY9~8：PWM3占空比高2位。
3.1.28 INTE2（第2中断屏蔽寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTE2</td>
<td>R</td>
<td>0x1F</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T3IF</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T3IE</td>
</tr>
</tbody>
</table>

读/写属性：- - - 读/写 - - - 读/写
初始值：- - - 0 - - - - 0

T3IF：定时器3下溢中断标志位。
- T3IF=1 时，发生定时器3下溢中断。
- T3IF必须由程序清零。

T3IE：定时器3下溢（underflow）中断使能位。
- T3IE=1 时，开启定时器3下溢中断。
- T3IE=0 时，关闭定时器3下溢中断。

3.2 T0MD（定时器0控制寄存器）

T0MD是可读写寄存器，但只能由指令T0MD / T0MDR存取。

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T0MD</td>
<td>-</td>
<td>-</td>
<td>LCKTM0</td>
<td>GP6</td>
<td>T0CS</td>
<td>T0CE</td>
<td>PS0WDT</td>
<td>PS0SEL[2:0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：读/写
初始值(note*) 0 0 1 1 1 1 111

PS0SEL[2:0]：选择预分频器0的预分频比（Dividing Rate）。预分频器0根据PS0WDT控制位决定分配给定时器0或WDT。当预分频器0被分配给WDT，预分频比取决于选择哪种计数机制（WDT复位或WDT中断）。

<table>
<thead>
<tr>
<th>PS0SEL[2:0]</th>
<th>预分频比选项</th>
<th>预分频比选项</th>
<th>预分频比选项</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PS0WDT=0 （定时器0）</td>
<td>PS0WDT=1 （WDT复位）</td>
<td>PS0WDT=1 （WDT中断）</td>
</tr>
<tr>
<td>000</td>
<td>1:2</td>
<td>1:1</td>
<td>1:2</td>
</tr>
<tr>
<td>001</td>
<td>1:4</td>
<td>1:2</td>
<td>1:4</td>
</tr>
<tr>
<td>010</td>
<td>1:8</td>
<td>1:4</td>
<td>1:8</td>
</tr>
<tr>
<td>011</td>
<td>1:16</td>
<td>1:8</td>
<td>1:16</td>
</tr>
<tr>
<td>100</td>
<td>1:32</td>
<td>1:16</td>
<td>1:32</td>
</tr>
<tr>
<td>101</td>
<td>1:64</td>
<td>1:32</td>
<td>1:64</td>
</tr>
<tr>
<td>110</td>
<td>1:128</td>
<td>1:64</td>
<td>1:128</td>
</tr>
<tr>
<td>111</td>
<td>1:256</td>
<td>1:128</td>
<td>1:256</td>
</tr>
</tbody>
</table>

表4 预分频器0的预分频比选项

PS0WDT：预分频器0分配选择。
- PS0WDT=1 时，预分频器0被分配到WDT。
- PS0WDT=0 时，预分频器0被分配到定时器0。

注意：在使能看门狗或定时器中断前，要先设定PS0WDT和PS0SEL[2:0]，否则复位或中断可能导致错误触发。
T0CE：定时器0外部时钟源触发沿选择。
T0CE=1 时，上升沿时定时器0加一。
T0CE=0 时，下降沿时定时器0加一。

注意：T0CE应用在外部 EX_CKI0 脚作为定时器0时钟源。

T0CS：定时器0时钟源选择。
T0CS=1 时，选择EX_CKI0脚或低频振荡I_LRC/E_LXT。
T0CS=0 时，选择指令时钟FINST。

GP6：通用读写器寄存器位。

LCKTM0：当T0CS=1 时，定时器0可被随意选择作为低频振荡器。
T0CS=0 时，指令时钟FINST被选作定时器0时钟源。
T0CS=1 时，LCKTM0=0 时，外部EX_CKI0脚被选择当作定时器0时钟源。
T0CS=1 时，LCKTM0=1 时，低频振荡I_LRC/E_LXT为定时器0时钟源。
低频振荡输出代替引脚EX_CKI0作为定时器0时钟源。

注意：有关定时器0时钟源选择的详细说明，请参考定时器0章节。

3.3 F-page特殊功能寄存器

3.3.1 IOSTA（PortA I/O控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSTA</td>
<td>F</td>
<td>0x5</td>
<td>IOPA7</td>
<td>IOPA6</td>
<td>IOPA5</td>
<td>IOPA4</td>
<td>IOPA3</td>
<td>IOPA2</td>
<td>IOPA1</td>
<td>IOPA0</td>
</tr>
<tr>
<td>读/写属性</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

IOPAx：PAx I/O模式选择，0 ≤ x ≤ 7。
IOPAx=1 时，PAx设为输入口。
IOPAx=0 时，PAx设为输出口。

3.3.2 IOSTB（PortB I/O控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOSTB</td>
<td>F</td>
<td>0x6</td>
<td>-</td>
<td>-</td>
<td>IOPB5</td>
<td>IOPB4</td>
<td>IOPB3</td>
<td>IOPB2</td>
<td>IOPB1</td>
<td>IOPB0</td>
</tr>
<tr>
<td>读/写属性</td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>X</td>
<td>X</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

IOPBx：PBx I/O模式选择，0 ≤ x ≤ 5。
IOPBx=1 时，PBx设为输入口。
IOPBx=0 时，PBx设为输出口。
3.3.3 APHCON（PortA 上拉电阻控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>APHCON</td>
<td>F</td>
<td>0x9</td>
<td>/PHPA7</td>
<td>/PHPA6</td>
<td>/PLPA5</td>
<td>/PHPA4</td>
<td>/PHPA3</td>
<td>/PHPA2</td>
<td>/PHPA1</td>
<td>/PHPA0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>初始值</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

/PHPAx: 开启/关闭 PAx 上拉电阻，x=0~4, 6~7。

/PHPAx=1 时，关闭 PAx 上拉电阻。
/PHPAx=0 时，开启 PAx 上拉电阻。

/PLPA5: 开启/关闭 PA5 下拉电阻。

/PLPA5=1 时，关闭 PA5 下拉电阻。
/PLPA5=0 时，开启 PA5 下拉电阻。

注意：PA6 与 PA7 作为晶振引脚时应关闭内置上拉电阻。

3.3.4 PS0CV（预分频器 0 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS0CV</td>
<td>F</td>
<td>0xA</td>
<td>PS0CV[7:0]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>读/写属性</td>
<td></td>
<td>R</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>初始值</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

读取 PS0CV 时，会得到预分频器 0 寄存器的目前计数值。

3.3.5 BODCON（PortB 开漏控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BODCON</td>
<td>F</td>
<td>0xC</td>
<td>-</td>
<td>-</td>
<td>ODPB5</td>
<td>ODPB4</td>
<td>ODPB3</td>
<td>ODPB2</td>
<td>ODPB1</td>
<td>ODPB0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
</tr>
<tr>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>初始值</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

ODPBx: 开启/关闭 PBx 的开漏，0 ≤ x ≤ 5。

ODPBx=1 时，开启 PBx 的开漏。
ODPBx=0 时，关闭 PBx 的开漏。

3.3.6 CMPCR（比较器控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMPCR</td>
<td>F</td>
<td>0xE</td>
<td>PS3</td>
<td>PS2</td>
<td>PS1</td>
<td>PS0</td>
<td>VS3</td>
<td>VS2</td>
<td>VS1</td>
<td>VS0</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>初始值</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

VS[3:0], PS[3:0]: 当 VS[3:0]=0 时，为 P2P 模式。VS[3:0] 不为 0 时为 P2V 模式。
当比较器处于 P2V 模式时，VS[3:0]从 15 个参考电压中选择一个作为比较器的负输入源。PS[3:0]确定 11 个引脚中的一个作为比较器的正输入源。

当比较器处于 P2P 模式时，VS[3:0]为固定 0。PS[3:0]从 4 个组合中选择 2 个脚位作为比较器的负输入源和正输入源。有关 P2P 模式的详细信息，请参阅功能描述比较器部分。

<table>
<thead>
<tr>
<th>VS[3:0]</th>
<th>比较器参考电压</th>
<th>PS[3:0]</th>
<th>选择引脚</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>P2P mode</td>
<td>0000</td>
<td>PA0</td>
</tr>
<tr>
<td>0001</td>
<td>1 / 16 VDD</td>
<td>0001</td>
<td>PA1</td>
</tr>
<tr>
<td>0010</td>
<td>2 / 16 VDD</td>
<td>0010</td>
<td>PA2</td>
</tr>
<tr>
<td>0011</td>
<td>3 / 16 VDD</td>
<td>0011</td>
<td>PA3</td>
</tr>
<tr>
<td>0100</td>
<td>4 / 16 VDD</td>
<td>0100</td>
<td>-</td>
</tr>
<tr>
<td>0101</td>
<td>5 / 16 VDD</td>
<td>0101</td>
<td>-</td>
</tr>
<tr>
<td>0110</td>
<td>6 / 16 VDD</td>
<td>0110</td>
<td>-</td>
</tr>
<tr>
<td>0111</td>
<td>7 / 16 VDD</td>
<td>0111</td>
<td>-</td>
</tr>
<tr>
<td>1000</td>
<td>8 / 16 VDD</td>
<td>1000</td>
<td>-</td>
</tr>
<tr>
<td>1001</td>
<td>9 / 16 VDD</td>
<td>1001</td>
<td>-</td>
</tr>
<tr>
<td>1010</td>
<td>10 / 16 VDD</td>
<td>1010</td>
<td>-</td>
</tr>
<tr>
<td>1011</td>
<td>11 / 16 VDD</td>
<td>1011</td>
<td>-</td>
</tr>
<tr>
<td>1100</td>
<td>12 / 16 VDD</td>
<td>1100</td>
<td>-</td>
</tr>
<tr>
<td>1101</td>
<td>13 / 16 VDD</td>
<td>1101</td>
<td>-</td>
</tr>
<tr>
<td>1110</td>
<td>14 / 16 VDD</td>
<td>1110</td>
<td>-</td>
</tr>
<tr>
<td>1111</td>
<td>15 / 16 VDD</td>
<td>1111</td>
<td>-</td>
</tr>
</tbody>
</table>

表 5 P2V 模式

<table>
<thead>
<tr>
<th>PS[3:0]</th>
<th>比较器正输入源</th>
<th>比较器负输入源</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>PA0</td>
<td>PA1</td>
</tr>
<tr>
<td>0001</td>
<td>PA1</td>
<td>PA0</td>
</tr>
<tr>
<td>0010</td>
<td>PA2</td>
<td>PA3</td>
</tr>
<tr>
<td>0011</td>
<td>PA3</td>
<td>PA2</td>
</tr>
</tbody>
</table>

表 6 P2P 模式 (VS[3:0] = 4'b0000)

3.3.7 PCON1（Power 控制寄存器 1）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PCON1</td>
<td>F</td>
<td>0xF</td>
<td>GIE</td>
<td>LVDOT</td>
<td>GP5</td>
<td>LVDS2</td>
<td>LVDS1</td>
<td>LVDS0</td>
<td>GP1</td>
<td>TOEN</td>
<td></td>
</tr>
</tbody>
</table>

读/写属性 | 读/写 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>初始值</td>
<td>0</td>
<td>X</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

TOEN：开启/关闭定时器 0。

TOEN=1 时，开启定时器 0。

TOEN=0 时，关闭定时器 0。
LVDS2~0：从 8 个LVD电压中选择一个。

<table>
<thead>
<tr>
<th>LVDS[2:0]</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>2.0V</td>
</tr>
<tr>
<td>001</td>
<td>2.2V</td>
</tr>
<tr>
<td>010</td>
<td>2.4V</td>
</tr>
<tr>
<td>011</td>
<td>2.7V</td>
</tr>
<tr>
<td>100</td>
<td>3.0V</td>
</tr>
<tr>
<td>101</td>
<td>3.3V</td>
</tr>
<tr>
<td>110</td>
<td>3.6V</td>
</tr>
<tr>
<td>111</td>
<td>4.3V</td>
</tr>
</tbody>
</table>

表 7 LVD 电压选择

LVDSOUT：低电压检测输出，只读。

GIE：开启/关闭总中断屏蔽位。

GIE=1 时，开启总中断。
GIE=0 时，关闭总中断。

GP5，GP1：通用寄存器数据位。

(1*)：由指令 ENI 设置 1，指令 DISI 清除、指令 IOSTR 所读取。

3.4 S-page特殊功能寄存器

3.4.1 TMR1（定时器 1 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR1</td>
<td>S</td>
<td>0x0</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMR1[7:0]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写属性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>初始值</td>
<td>XXXXXXXX</td>
<td>初始值</td>
<td>XXXXXXXX</td>
<td>初始值</td>
<td>XXXXXXXX</td>
<td>初始值</td>
<td></td>
</tr>
</tbody>
</table>

当读取TMR1 寄存器时，会得到 10 位定时器 1 中的低字节当前计数值。写TMR1 时，会将TMRH[5:4]和TMR1[9:0]一起写到定时器 1 重载寄存器中。

3.4.2 T1CR1（定时器 1 控制寄存器 1）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1CR1</td>
<td>S</td>
<td>0x1</td>
<td>PWM1OEN</td>
<td>PWM1OAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T1OS</td>
<td>T1RL</td>
<td>T1EN</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>读/写属性</td>
<td>读/写属性</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>读/写属性</td>
<td>读/写属性</td>
<td>读/写属性</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>初始值</td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

此寄存器用于配置定时器 1 功能。

T1EN：开启/关闭定时器 1。

T1EN=1 时，开启定时器 1。
T1EN=0 时，关闭定时器 1。
T1RL：当连续模式被选择（T1OS=0），选择定时器1下数方式。T1RL=1 时，当下溢发生，定时器 1 初始值从 TMR1[9:0]寄存器被重新加载。T1RL=0 时，当下溢发生，定时器 1 继续从 0x3FF 下数。

T1OS：当下溢发生，设置定时器 1 操作模式。T1OS=1 时，单次计数模式（One-Shot mode）。定时器 1 会从初始值到 0x00 计数一次。T1OS=0 时，连续计数模式（Non-Stop mode）。下溢后，定时器 1 会持续下数。

<table>
<thead>
<tr>
<th>T1OS</th>
<th>T1RL</th>
<th>定时器 1 计数选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>定时器 1 从 0x3FF 下数到 0x00。当下溢发生，0x3FF 被重载至定时器 1 并继续下数。</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>定时器 1 从重载的数值下数到 0x00。当下溢发生，定时器 1 从 TMR1[9:0]重新载入数值并继续下数。</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>定时器 1 从初始值下数到 0x00。当下溢发生，定时器 1 停止下数。</td>
</tr>
</tbody>
</table>

表 8 定时器 1 功能

PWM1OAL：定义 PWM1 输出有效状态。PWM1OAL=1 时，PWM1 为低电平有效位输出。PWM1OAL=0 时，PWM1 为高电平有效位输出。

PWM1OEN：开启/关闭 PWM1 输出。PWM1OEN=1，PB3 输出 PWM1。PWM1OEN=0，PB3 为 GPIO。

3.4.3 T1CR2（定时器 1 控制寄存器 2）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1CR2</td>
<td>S</td>
<td>0x2</td>
<td>-</td>
<td>-</td>
<td>T1CS</td>
<td>T1CE</td>
<td>/PS1EN</td>
<td>PS1SEL[2:0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性

初始值 X X 1 1 1 1 1 1

这个寄存器用于配置 Timer1 功能。

PS1SEL[2:0]：预分频器 1 预分频比选项。

<table>
<thead>
<tr>
<th>PS1SEL[2:0]</th>
<th>预分频比选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1:2</td>
</tr>
<tr>
<td>001</td>
<td>1:4</td>
</tr>
<tr>
<td>010</td>
<td>1:8</td>
</tr>
<tr>
<td>011</td>
<td>1:16</td>
</tr>
<tr>
<td>100</td>
<td>1:32</td>
</tr>
<tr>
<td>101</td>
<td>1:64</td>
</tr>
<tr>
<td>110</td>
<td>1:128</td>
</tr>
<tr>
<td>111</td>
<td>1:256</td>
</tr>
</tbody>
</table>
表 9 预分频器 1 预分频比选项

注意：在 PS1EN=1 前须先设定 PS1SEL[2:0]，否则可能会误发生中断。

/PS1EN：关闭/开启预除器 1。
 /PS1EN=1 时，关闭预分频器 1。
 /PS1EN=0 时，开启预分频器 1。

T1CE：定时器 1 外部时钟触发沿选项。
 T1CE=1 时，EX_CKI0 脚下降沿时定时器 1 减一。
 T1CE=0 时，EX_CKI0 脚上升沿时定时器 1 减一。

T1CS：定时器 1 时钟源选项。
 T1CS=1 时，选择 EX_CKI0 脚作为外部时钟输入。
 T1CS=0 时，选择指令时钟 FINST。

3.4.4 PWM1DUTY（PWM1 占空比寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM1DUTY</td>
<td>S</td>
<td>0x3</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性
初始值：XXXXXXXX

定时器 1 重新加载的数值储存在 TMRH[5:4]与 TMR1[7:0]寄存器，以用来定义 PWM1 帧率，TMRH[1:0]与 PWM1DUTY[7:0]寄存器用于定义 PWM1 的占空比。

3.4.5 PS1CV（预分频器 1 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS1CV</td>
<td>S</td>
<td>0x4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性
初始值：1 1 1 1 1 1 1

读取 PS1CV 时，将会得到预分频器 1 的目前数值。

3.4.6 BZ1CR（蜂鸣器 1 控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ1CR</td>
<td>S</td>
<td>0x5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性
初始值：0 X X X 1 1 1 1

BZ1FSEL[3:0]：BZ1 输出频率选项。

<table>
<thead>
<tr>
<th>BZ1FSEL[3:0]</th>
<th>BZ1 频率选项</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>时钟源</td>
</tr>
<tr>
<td></td>
<td>预分频比</td>
</tr>
</tbody>
</table>
3.4.7 IRCR（IR控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>IRCR</td>
<td>S</td>
<td>0x6</td>
<td>IROSC358M</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>IRCSEL</td>
<td>IRF57K</td>
<td>IREN</td>
</tr>
<tr>
<td>读/写属性</td>
<td>写</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>写</td>
<td>写</td>
<td>写</td>
<td></td>
<td></td>
</tr>
<tr>
<td>初始值</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- **IREN**: 开启/关闭IR载波输出。
 - IREN=1 时，开启IR载波输出。
 - IREN=0 时，关闭IR载波输出。

- **IRF57K**: IR载波频率选择。
 - IRF57K=1 时，IR载波频率是 57KHz。
 - IRF57K=0 时，IR载波频率是 38KHz。

- **IRCSEL**: IR载波极性选择。
IRCSEL=0 且 I/O 脚数据是 1 时，IR 载波会被产生。
IRCSEL=1 且 I/O 脚数据是 0 时，IR 载波会被产生。

IROSC358M：选择使用的外部晶振频率类型。
若选择 I_HRC 此位将被忽略。
IROSC358M=1，外部晶振频率请用 3.58MHz。
IROSC358M=0，外部晶振频率请用 455KHz。

注意：
1. 仅有高速振荡时钟 F_{Hosc}（详见章节 3.17）可以当作 IR 时钟源。
2. 不同振荡类型的分频比。

<table>
<thead>
<tr>
<th>OSC. Type</th>
<th>57KHz</th>
<th>38KHz</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>High IRC(4MHz)</td>
<td>64</td>
<td>96</td>
<td>HIRC 模式（不论系统时钟频率是多少，IR 模块的输入时钟都设定为 4MHz）</td>
</tr>
<tr>
<td>Xtal 3.58MHz</td>
<td>64</td>
<td>96</td>
<td>E_XT 模式 & IROSC358M=1</td>
</tr>
<tr>
<td>Xtal 455KHz</td>
<td>8</td>
<td>12</td>
<td>E_XT 模式 & IROSC358M=0</td>
</tr>
</tbody>
</table>

表 11 不同振荡类型的分频比

3.4.8 TBHP（表格指针高字节寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBHP</td>
<td>S</td>
<td>0x7</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

3.4.9 TBHD（表格数据高字节寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TBHD</td>
<td>S</td>
<td>0x8</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
</tbody>
</table>

3.4.10 TMR2（定时器 2 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR2</td>
<td>S</td>
<td>0x9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
当读取 TMR2 寄存器时，会得到 10 位定时器 2 中的低字目前计数值。写 TMR2 时，会将 TMRH[7:6]和 TMR2[7:0]一起写到定时器 2 重载寄存器中。

3.4.11 T2CR1（定时器 2 控制寄存器 1）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2CR1</td>
<td>S</td>
<td>0xA</td>
<td>PWM2OEN</td>
<td>PWM2OAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T2OS</td>
</tr>
</tbody>
</table>

此寄存器用于配置定时器 2 功能。

T2EN: 开启/关闭定时器 2。
- T2EN=1 时，开启定时器 2。
- T2EN=0 时，关闭定时器 2。

T2RL: 当连续模式被选择 (T2OS=0)，选择定时器 2 下数方式。
- T2RL=1 时，当下溢发生，定时器 2 初始值从 TMR2[9:0]寄存器被重新加载。
- T2RL=0 时，当下溢发生，定时器 2 继续从 0x3FF 下数。

T2OS: 当下溢发生，设置定时器 2 操作模式。
- T2OS=1 时，单次计数模式 (One-Shot mode)。定时器 2 会从初始值到 0x00 计数一次。
- T2OS=0 时，连续计数模式 (Non-Stop mode)。下溢后，定时器 2 会持续下数。

<table>
<thead>
<tr>
<th>T2OS</th>
<th>T2RL</th>
<th>定时器 2 计数选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>定时器 2 从 0x3FF 下数到 0x00。当下溢发生，0x3FF 被重载至定时器 2 并继续下数。</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>定时器 2 从重载的数值下数到 0x00。当下溢发生，定时器 2 从 TMR2[9:0] 重新载入数值并继续下数。</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>定时器 2 从初始值下数到 0x00。当下溢发生，定时器 2 停止下数。</td>
</tr>
</tbody>
</table>

表 12 定时器 2 功能

PWM2OAL: 定义 PWM2 输出有效状态。
- PWM2OAL=1 时，PWM2 为低电平有效位输出。
- PWM2OAL=0 时，PWM2 为高电平有效位输出。

PWM2OEN: 开启/关闭 PWM2 输出。
- PWM2OEN=1，PB2 输出 PWM2。
- PWM2OEN=0，PB2 为 GPIO。
3.4.12 T2CR2（定时器 2 控制寄存器 2）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T2CR2</td>
<td>S</td>
<td>0xB</td>
<td>-</td>
<td>-</td>
<td>T2CS</td>
<td>T2CE</td>
<td>/PS2EN</td>
<td>PS2SEL[2:0]</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
</tr>
<tr>
<td>初始值</td>
<td></td>
<td></td>
<td>x</td>
<td>x</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

该寄存器用于配置定时器 2 功能。

PS2SEL[2:0]：预分频器 2 预分频比选项。

<table>
<thead>
<tr>
<th>PS2SEL[2:0]</th>
<th>预分频比选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1:2</td>
</tr>
<tr>
<td>001</td>
<td>1:4</td>
</tr>
<tr>
<td>010</td>
<td>1:8</td>
</tr>
<tr>
<td>011</td>
<td>1:16</td>
</tr>
<tr>
<td>100</td>
<td>1:32</td>
</tr>
<tr>
<td>101</td>
<td>1:64</td>
</tr>
<tr>
<td>110</td>
<td>1:128</td>
</tr>
<tr>
<td>111</td>
<td>1:256</td>
</tr>
</tbody>
</table>

表 13 预分频器 2 预分频比选项

注意：在 PS2EN=1 前须先设定 PS2SEL[2:0]，否则可能会误发生中断。

/PS2EN：关闭/开启预除法。

- /PS2EN=1 时，关闭预分频器 2。
- /PS2EN=0 时，开启预分频器 2。

T2CE：定时器 2 外部时钟触发沿选项。

- T2CE=1 时，EX_CKI1 脚下降沿时定时器 2 减一。
- T2CE=0 时，EX_CKI1 脚上升沿时定时器 2 减一。

T2CS：定时器 2 时钟源选项。

- T2CS=1 时，选择 EX_CKI1 脚作为外部时钟输入。
- T2CS=0 时，选择指令时钟 FINST。

3.4.13 PWM2DUTY（PWM2 占空比寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM2DUTY</td>
<td>S</td>
<td>0xC</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>初始值</td>
<td></td>
<td></td>
<td>XXXXXXXX</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.4.14 PS2CV（预分频器2寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS2CV</td>
<td>S</td>
<td>0xD</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>PS2CV[7:0]</td>
</tr>
</tbody>
</table>

读/写属性：读
初始值：1 1 1 1 1 1 1 1 1 1

读取PS2CV时，将会得到预分频器2的目前数值。

3.4.15 BZ2CR（蜂鸣器2控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ2CR</td>
<td>S</td>
<td>0x0E</td>
<td>BZ2EN</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>BZ2FSEL[3:0]</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：W - - - 写
初始值：0 X X X 1 1 1 1

BZ2FSEL[3:0]: BZ2输出频率选项。

<table>
<thead>
<tr>
<th>BZ2FSEL[3:0]</th>
<th>BZ2 频率选项</th>
<th>预分频比</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>预分频器2输出</td>
<td>1:2</td>
</tr>
<tr>
<td>0001</td>
<td>预分频器2输出</td>
<td>1:4</td>
</tr>
<tr>
<td>0010</td>
<td>预分频器2输出</td>
<td>1:8</td>
</tr>
<tr>
<td>0011</td>
<td>预分频器2输出</td>
<td>1:16</td>
</tr>
<tr>
<td>0100</td>
<td>定时器2输出</td>
<td>1:32</td>
</tr>
<tr>
<td>0101</td>
<td>定时器2输出</td>
<td>1:64</td>
</tr>
<tr>
<td>0110</td>
<td>定时器2输出</td>
<td>1:128</td>
</tr>
<tr>
<td>0111</td>
<td>定时器2输出</td>
<td>1:256</td>
</tr>
<tr>
<td>1000</td>
<td>定时器2输出</td>
<td>定时器2 bit 0</td>
</tr>
<tr>
<td>1001</td>
<td>定时器2输出</td>
<td>定时器2 bit 1</td>
</tr>
<tr>
<td>1010</td>
<td>定时器2输出</td>
<td>定时器2 bit 2</td>
</tr>
<tr>
<td>1011</td>
<td>定时器2输出</td>
<td>定时器2 bit 3</td>
</tr>
<tr>
<td>1100</td>
<td>定时器2输出</td>
<td>定时器2 bit 4</td>
</tr>
<tr>
<td>1101</td>
<td>定时器2输出</td>
<td>定时器2 bit 5</td>
</tr>
<tr>
<td>1110</td>
<td>定时器2输出</td>
<td>定时器2 bit 6</td>
</tr>
<tr>
<td>1111</td>
<td>定时器2输出</td>
<td>定时器2 bit 7</td>
</tr>
</tbody>
</table>

表14 蜂鸣器BZ2输出频率选项

BZ2EN：开启/关闭蜂鸣器2输出。
- BZ2EN=1时，开启蜂鸣器2。
- BZ2EN=0时，关闭蜂鸣器2。
3.4.16 OSCCR（振荡器控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>OSCCR</td>
<td>S</td>
<td>0xF</td>
<td>CMPOUT</td>
<td>CMPOE</td>
<td>CMPIF</td>
<td>CMPIE</td>
<td>OPMD[1:0]</td>
<td>STPHOSC</td>
<td>SELHOSC</td>
<td></td>
</tr>
<tr>
<td>读/写属性</td>
<td>R</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
</tr>
<tr>
<td>初始值</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

SELHOSC：系统振荡器选择（Fosc）。

SELHOSC=1 时，Fosc是高频率振荡器（F_HOSC）。
SELHOSC=0 时，Fosc是低频率振荡器（F_LOSC）。

STPHOSC：关闭/开启高频率振荡器（F_HOSC）。

STPHOSC=1 时，F_HOSC会停止振荡并被关闭。
STPHOSC=0 时，F_HOSC保持振荡。

OPMD[1:0]：选择操作模式。

<table>
<thead>
<tr>
<th>OPMD[1:0]</th>
<th>操作模式</th>
</tr>
</thead>
<tbody>
<tr>
<td>00</td>
<td>正常模式</td>
</tr>
<tr>
<td>01</td>
<td>睡眠模式</td>
</tr>
<tr>
<td>10</td>
<td>待机模式</td>
</tr>
<tr>
<td>11</td>
<td>保留</td>
</tr>
</tbody>
</table>

表 15 选择OPMD[1:0]的操作模式

CMPIE：比较器中断使能位。

CMPIE=1 时，开启比较器中断。
CMPIE=0 时，关闭比较器中断。

CMPIF：比较器输出翻转中断标志位。

CMPIF=1，发生比较器输出翻转中断。
CMPIF必须由程序清零。

CMPOE：开启/关闭比较器输出到PB3 引脚。

CMPOE=1 时，开启比较器输出到PB3 引脚。
CMPOE=0 时，关闭比较器输出到PB3 引脚。

注意：比较器输出到 PB3 引脚优先于 PWM1/BUZZER1。

CMPOUT：比较器输出状态位。

注意：STPHOSC不能与SELHOSC或OPMD同时更改。在SELHOSC=1 时，STPHOSC不能与OPMD同时更改。
3.4.17 TMR3（定时器 3 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>TMR3</td>
<td>S</td>
<td>0x10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>TMR3[7:0]</td>
</tr>
<tr>
<td></td>
<td>读/写属性</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>读/写</td>
</tr>
<tr>
<td></td>
<td>初始值</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>XXXXXXXX</td>
</tr>
</tbody>
</table>

当读取 TMR3 寄存器时，会得到 10 位定时器 3 中的低字节目前计数值。写 TMR3 时，会将 TM3RH[5:4]和 TMR3[7:0]一起写到定时器 3 重载寄存器中。

3.4.18 T3CR1（定时器 3 控制寄存器 1）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3CR1</td>
<td>S</td>
<td>0x11</td>
<td>PWM3OEN</td>
<td>PWM3OAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>T3OS</td>
<td>T3RL</td>
<td>T3EN</td>
</tr>
<tr>
<td></td>
<td>读/写属性</td>
<td></td>
<td>读/写</td>
<td>读/写</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>读/写</td>
<td>读/写</td>
<td>读/写</td>
</tr>
<tr>
<td></td>
<td>初始值</td>
<td></td>
<td>0</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

此寄存器用于配置定时器 3 功能。

T3EN: 开启/关闭定时器 3。

T3EN=1 时，开启定时器 3。
T3EN=0 时，关闭定时器 3。

T3RL: 当连续模式被选择（T3OS=0），选择定时器 3 下数方式。

T3RL=1 时，当下溢发生，定时器 3 初始化值从 TMR3[9:0]寄存器被重新加载。
T3RL=0 时，当下溢发生，定时器 3 继续从 0x3FF 下数。

T3OS: 当下溢发生，设置定时器 3 操作模式。

T3OS=1 时，单次计数模式（One-Shot mode）。定时器 3 会从初始值到 0x00 计数一次。
T3OS=0 时，连续计数模式（Non-Stop mode）。下溢后，定时器 3 会持续下数。表 16 定时器 3 功能

<table>
<thead>
<tr>
<th>T3OS</th>
<th>T3RL</th>
<th>定时器 3 计数选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>定时器 3 从 0x3FF 下数到 0x00。当下溢发生，0x3FF 被重载至定时器 3 并继续下数。</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>定时器 3 从重载的数值下数到 0x00。当下溢发生，定时器 3 从 TMR3[9:0]重新载入数值并继续下数。</td>
</tr>
<tr>
<td>1</td>
<td>x</td>
<td>定时器 3 从初始值下数到 0x00。当下溢发生，定时器 3 停止下数。</td>
</tr>
</tbody>
</table>

PWM3OAL: 定义 PWM3 输出有效状态。

PWM3OAL=1 时，PWM3 为低电平有效位输出。
PWM3OAL=0 时，PWM3 为高电平有效位输出。

PWM3OEN: 开启/关闭 PWM3 输出。
PWM3OEN=1，PA2 输出PWM3。

PWM3OEN=0，PA2 为GPIO。

3.4.19 T3CR2（定时器3控制寄存器2）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>T3CR2</td>
<td>S</td>
<td>0x12</td>
<td>-</td>
<td>-</td>
<td>T3CS</td>
<td>T3CE</td>
<td>/PS3EN</td>
<td>PS3SEL[2:0]</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：- - 读/写 读/写 读/写 读/写 读/写 读/写

初始值：X X 1 1 1 1 1

该寄存器用于配置定时器3功能。

PS3SEL[2:0]: 预分频器3预分频比选项。

<table>
<thead>
<tr>
<th>PS3SEL[2:0]</th>
<th>预分频比选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>1:2</td>
</tr>
<tr>
<td>001</td>
<td>1:4</td>
</tr>
<tr>
<td>010</td>
<td>1:8</td>
</tr>
<tr>
<td>011</td>
<td>1:16</td>
</tr>
<tr>
<td>100</td>
<td>1:32</td>
</tr>
<tr>
<td>101</td>
<td>1:64</td>
</tr>
<tr>
<td>110</td>
<td>1:128</td>
</tr>
<tr>
<td>111</td>
<td>1:256</td>
</tr>
</tbody>
</table>

表17 预分频器3预分频比选项

注意：在PS3EN=1前须先设定PS3SEL[2:0]，否则可能会误发生中断。

/PS3EN: 关闭/开启预除器3。

/PS3EN=1时，关闭预分频器3。

/PS3EN=0时，开启预分频器3。

T3CE: 定时器3外部时钟触发沿选项。

T3CE=1时，EX_CKI1脚下降沿时定时器3减一。

T3CE=0时，EX_CKI1脚上升沿时定时器3减一。

T3CS: 定时器3时钟源选项。

T3CS=1时，选择EX_CKI1脚作为外部时钟输入。

T3CS=0时，选择指令时钟FINST。

3.4.20 PWM3DUTY（PWM3占空比寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM3DUTY</td>
<td>S</td>
<td>0x13</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：写

初始值：XXXXXXXX

3.4.21 PS3CV（预分频器 3 寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PS3CV</td>
<td>S</td>
<td>0x14</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：读

初始值：1 1 1 1 1 1 1 1 1 1

读取 PS3CV 时，将会得到预分频器 3 的目前数值。

3.4.22 BZ3CR（蜂鸣器 3 控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>BZ3CR</td>
<td>S</td>
<td>0x15</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：W - - - 写

初始值：0 X X X 1 1 1 1

BZ3FSEL[3:0]：BZ3 输出频率选项。

<table>
<thead>
<tr>
<th>BZ3FSEL[3:0]</th>
<th>BZ3 频率选项</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>时钟源</td>
</tr>
<tr>
<td>0000</td>
<td>预分频器 3 输出</td>
</tr>
<tr>
<td>0001</td>
<td>预分频器 3 输出</td>
</tr>
<tr>
<td>0010</td>
<td>预分频器 3 输出</td>
</tr>
<tr>
<td>0011</td>
<td>预分频器 3 输出</td>
</tr>
<tr>
<td>0100</td>
<td>预分频器 3 输出</td>
</tr>
<tr>
<td>0101</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>0110</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>0111</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1000</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1001</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1010</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1011</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1100</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1101</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1110</td>
<td>定时器 3 输出</td>
</tr>
<tr>
<td>1111</td>
<td>定时器 3 输出</td>
</tr>
</tbody>
</table>

表 18：蜂鸣器 BZ3 输出频率选项

BZ3EN：开启/关闭蜂鸣器 3 输出。

BZ3EN=1 时，开启蜂鸣器 3。

BZ3EN=0 时，关闭蜂鸣器 3。
3.4.23 P4CR1（PWM4 控制寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>P4CR1</td>
<td>S</td>
<td>0x16</td>
<td>PWM4OEN</td>
<td>PWM4OAL</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

读/写属性：读/写
初始值：0 0 X X X X X X

PWM4OAL：定义PWM4 输出有效状态。
- PWM4OAL=1 时，PWM4 为低电平有效位输出。
- PWM4OAL=0 时，PWM4 为高电平有效位输出。

PWM4OEN：开启/关闭PWM4 输出。
- PWM4OEN=1，PA3 或PA7 输出PWM4。
- PWM4OEN=0，PA3 或PA7 为GPIO。

注意：PWM4 输出由NYIDE 配置块设置定义。

3.4.24 PWM4DUTY（PWM4 占空比寄存器）

<table>
<thead>
<tr>
<th>名称</th>
<th>SFR 类型</th>
<th>地址</th>
<th>Bit7</th>
<th>Bit6</th>
<th>Bit5</th>
<th>Bit4</th>
<th>Bit3</th>
<th>Bit2</th>
<th>Bit1</th>
<th>Bit0</th>
</tr>
</thead>
<tbody>
<tr>
<td>PWM4DUTY</td>
<td>S</td>
<td>0x18</td>
<td>PWM4DUTY[7:0]</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

读/写属性：写
初始值：XXXXXXXX

3.5 I/O Port

当PortB的一个I/O脚位被配置为输出口，可由寄存器开启或关闭开漏。寄存器BODCON[5:0]决定PB[5:0]是否为开漏输出脚。

I/O口功能摘要如下表：

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>输入</td>
<td>上拉电阻</td>
<td>V</td>
<td>V</td>
<td>V</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>下拉电阻</td>
<td>V</td>
<td>X</td>
<td>V</td>
<td>X</td>
</tr>
</tbody>
</table>
--- | --- | --- | --- | --- | ---
输出 | 开漏 | X | X | 总是 | V

表 19 I/O 端口功能摘要

在 PA 和 PB 的每个 I/O 脚都有输入状态改变产生中断功能。寄存器 AWUCON[7:0] 和 BWUCON[5:0] 会使能或禁能任一 PA 和 PB 脚位的唤醒功能。只要 AWUCON 和 BWUCON 对应到的任一 PA 和 PB 脚位被置为 1 时，且在此输入脚位有状态改变时，寄存器 PABIF (INTF[1]) 就会被设为 1。如果寄存器 PABIE (INTE[1]) 与 GIE (PCON1[7]) 同时设定为 1，将发生中断要求并执行中断服务程序。

NY8B062E 提供 2 个外部中断，当寄存器 EIS0 (INTEG[4]) 设定为 1，PB0 则被当作外部中断 0 的输入脚。当寄存器 EIS1 (INTEG[5]) 设定为 1，PB1 则被当作外部中断 1 的输入脚。

注意：当 PB0 或 PB1 同时设定成输入状态改变触发脚与外部中断脚，外部中断有较高的优先权，而 PB0 或 PB1 输入状态改变触发脚则会被关闭，但其它输入状态改变触发脚不会被影响。

NY8B062E 提供红外线 IR 载波生成器。当 IREN=1 时，PB1 会输出 IR 载波。当 IREN=0 时，不产生 IR 载波。

由配置字节决定 PA5 可否当作外部复位输入 RSTb。当 PA5 为低电平时将导致 NY8B062E 发生复位。

当配置字节设置外置晶振 (E_HXT, E_XT 或 E_LXT) 用于高速振荡时钟或低速振荡时钟时，PA6 当作晶振输入引脚 (Xin)，PA7 当作晶振输出引脚 (Xout)。

当配置字节设置 I_HRC 或 I_LRC 用于高速振荡时钟或低速振荡时钟时，用户可以在 PA7 输出指令时钟 FINST。

此外，当 T0MD T0CS=1 和 LCK_TM0=0 时，PA4 可以是定时器 0 外部时钟源 EX_CK10。当 T1CS=1 时，PA4 为定时器 1 外部时钟源 EX_CK11。当 T2CS/T3CS=1 时，PA1 为 Timer2/Timer3 外部时钟源 EX_CK11。

CMPOE=1 时，PB3 可作为比较器输出。如果 T1CR1[7] PWM1OEN=1，PB3 可以输出 PWM1。当 BZ1CR[7] BZ1EN=1 时，PB3 可作为 Buzzer1 输出。PB3 的输出优先级为比较器输出 > PWM1 输出 > Buzzer1 输出。

当 IO 配置为输出口，每个引脚可在配置字节设置为一般灌电流 (19mA@VDD=3V)，大灌电流 (28mA@VDD=3V)。如下表 21 所示。

<table>
<thead>
<tr>
<th>配置字节</th>
<th>一般灌电流</th>
<th>大灌电流</th>
</tr>
</thead>
<tbody>
<tr>
<td>PXcurrent</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>PXcsc</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

表 20 灌电流模式选择（X=A, B）
3.5.1 IO 引脚结构框图

IO_SEL：设定引脚为输入或输出口。

WRITE_EN：将数据写入引脚。

READ_EN：读取引脚状态。

PULLUP_ENB：开启内部上拉电阻。

PULLDOWN_EN：开启内部下拉电阻。

VPEN：开启为比较器正输入引脚。

VNEN：开启为比较器负输入引脚。

CMPVP，CMPVN：比较器正输入与负输入引脚。

RD_TYPE：选择读取脚位或数据锁存器。

图 5 PA[3:2]，PA0 引脚结构框图
IO_SEL：设定引脚为输入或输出口。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
PULLUP_ENB：开启内部上拉电阻。
PULLDOWN_EN：开启内部下拉电阻。
VPEN：开启为比较器正输入引脚。
VNEN：开启为比较器负输入引脚。
CMPVP，CMPVN：比较器正输入与负输入引脚。
RD_TYPE：选择读取脚位或数据锁存器。
EX_CKI1： Timer 2/3 外部时钟输入。

图 6 PA1 引脚结构框图
IO_SEL: 设定引脚为输入或输出。
WRITE_EN: 将数据写入引脚。
READ_EN: 读取引脚状态。
PULLUP_ENB: 开启内部上拉电阻。
RD_TYPE: 选择读取脚位或数据锁存器。
EX_CKI0: Timer0,1 外部时钟输入。

图 7 PA4 引脚结构框图
RSTPAD_EN：开启外部复位引脚。
RSTB_IN：复位引脚输入。
IO_SEL：设定引脚为输入或输出口。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
PULLUP_ENB：开启内部上拉电阻。
PULLDOWN_EN：开启内部下拉电阻。
RD_TYPE：选择读取脚位或数据锁存器。

图 8 PA5 引脚结构框图
XTL_EN: 开启外置晶振。
IO_SEL: 设定引脚为输入或输出口。
WRITE_EN: 将数据写入引脚。
READ_EN: 读取引脚状态。
PULLUP_ENB: 开启内部上拉电阻。
RD_TYPE: 选择读取脚位或数据锁存器。

图 9 PA6, PA7 引脚结构框图
IO_SEL：设定引脚为输入或输出口。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
OD_EN：开启开漏。
PULLUP_ENB：开启内部上拉电阻。
PULLDOWN_EN：开启内部下拉电阻。
RD_TYPE：选择读取脚位或数据锁存器。
EIS0：使能外部中断 0 功能。
INTEDG[1:0]：选择外部中断 0 触发沿。
EX_INT0：外部中断 0 信号。
WUB：使能PB唤醒功能。
SET_PBIF：PB唤醒标志。

图 10 PB0 引脚结构框图
IO_SEL：设定引脚为输入或输出口。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
OD_EN：开启开漏。
PULLUP_ENB：开启内部上拉电阻。
PULLDOWN_EN：开启内部下拉电阻。
RD>Type：选择读取脚位或数据锁存器。
EIS1：使能外部中断1功能。
INTEDG[3:2]：选择外部中断1触发沿。
EX_INT1：外部中断1信号。
WUB：使能PB唤醒功能。
SET_PBIF：PB唤醒标志。

图11 PB1引脚结构框图
IO_SEL：设定引脚为输入或输出。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
OD_EN：开启开漏。
PULLUP_EN：开启内部上拉电阻。
PULLDOWN_EN：开启内部下拉电阻。
RD_TYPE：选择读取脚位或数据锁存器。
WUB：使能PB唤醒功能。
SET_PBIF：PB唤醒标志。

图 12 PB2 引脚结构框图
IO_SEL：设定引脚为输入或输出口。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
OD_EN：开启开漏。
PULLUP_ENB：开启内部上拉电阻。
PULLDOWN_EN：开启内部下拉电阻。
RD_TYPE：选择读取脚位或数据锁存器。
WUB：使能PB唤醒功能。
SET_PBIF：PB唤醒标志。

图 13 PB3 引脚结构框图
IO_SEL：设定引脚为输入或输出口。
WRITE_EN：将数据写入引脚。
READ_EN：读取引脚状态。
OD_EN：开启开漏。
PULLUP_ENB：开启内部上拉电阻。
RD_TYPE：选择读取脚位或数据锁存器。
WUB：使能PB唤醒功能。
SET_PBIIF：PB唤醒标志。

图 14 PB4，5 引脚结构框图
3.6 定时器 0

定时器 0 是 8 位数的定时器，由寄存器 T0EN（PCON1[0]）开启/关闭。写入定时器 0 将会设定其初始值，读取定时器 0 时则会显示目前的计数值。

定时器 0 的时钟源可由寄存器 T0CS（T0MD[5]）与 LCK_TM0（T0MD[7]）所决定，可以由指令时钟 F_INST、外部时钟输入脚 EX_CKIO 或低频振荡 I_LRC/E_LXT 中择一。当 T0CS 为 0，指令时钟会被选择当作定时器 0 时钟源。当 T0CS 为 1 且 LCK_TM0 为 0，EX_CKIO 会被当作定时器 0 时钟源。当 T0CS 是 1 且 LCK_TM0 为 1，会选择低频振荡 I_LRC/E_LXT 当作定时器 0 时钟源。汇总成表格如下。（也请参考图 15）

<table>
<thead>
<tr>
<th>定时器 0 时钟源</th>
<th>T0CS</th>
<th>LCKTM0</th>
<th>定时器 0 来源</th>
<th>低频振荡</th>
</tr>
</thead>
<tbody>
<tr>
<td>Instruction clock</td>
<td>0</td>
<td>X</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td>EX_CKIO</td>
<td>1</td>
<td>0</td>
<td>X</td>
<td>X</td>
</tr>
<tr>
<td></td>
<td></td>
<td>X</td>
<td>0</td>
<td></td>
</tr>
<tr>
<td>E_LXT</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>I_LRC</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>

表 21 定时器 0 时钟源摘要

寄存器 T0CE（T0MD[4]）可决定 EX_CKIO 或 I_LRC/E_LXT 的时钟触发沿。当 T0CE 是 1，EX_CKIO 或 I_LRC/E_LXT 的上升沿将让定时器 0 计数加一。当 T0CE 是 0，EX_CKIO 或 I_LRC/E_LXT 的下降沿将让定时器 0 计数加一。

如果寄存器 PS0WDT（T0MD[3]）为 0，定时器 0 时钟源可以由预分频器 0 所分频。预分频器 0 会被指定到定时器 0，且会在 PS0WDT 设为 0 时清除 Timer0 与寄存器 PS0CV。寄存器 PS0SEL[2:0]（T0MD[2:0]）决定预分频器 0 的预分频比，其数值从 1:2 到 1:256。

定时器 0 时钟源默认为指令时钟。如果外部时钟脚 EX_CKIO 或低频振荡 I_LRC/E_LXT 被用来当作定时器 0 时钟源，用户必须注意分频后的频率不能超过指令时钟，否则会导致错误计数。当 I_LRC/E_LXT 同时被当作定时器 0 时钟源与指令时钟，用户必须指定预分频器 0 到定时器 0，且须注意预分频器 0 的预分频比不得小于 4。当配置字节设定为异步（Async.），定时器 0 时外部钟源 EX_CKIO 频率就可高于指令时钟。

当定时器 0 上溢，寄存器 T0IF（INTF[0]）将会设定为 1，以标明定时器 0 发生上溢中断。如果寄存器 T0IE（INTE[0]）与 GIE 都设定为 1，会发生中断的请求并执行中断服务程序。直到程序写入 0 到 T0IF，T0IF 才会被清除。

定时器 0 与 WDT 的结构框图如下图：
3.7 定时器 1/PWM1/Buzzer1

定时器 1 是具有预分频器 1 的 10 位下数定时器，其预分频比是可编程的。定时器 1 的输出可以被用于产生 PWM1 输出与蜂鸣器 1 输出。写入定时器 1 高 2 位（TMRH[5:4]）再写入 TMR1[7:0]时，就可更新定时器 1 重载缓存寄存器。当 T1EN=0 时，定时器 1 重载缓存寄存器会立即写入定时器 1。当 T1EN=1 时，会等到定时器 1 下溢后，定时器 1 重载缓存寄存器才会写入定时器 1。读取寄存器 TMR1[9:0]会显示定时器 1 目前计数值的内容。

定时器 1 的结构框图如下图所示：

![定时器 1 结构框图](image-url)

定时器 1 的操作可以由寄存器 T1EN（T1CR1[0]）开启或关闭。开启定时器 1 后，寄存器 T1CS（T1CR2[5]）可决定时钟源是指令时钟 FINST 或外部时钟 EX_CK10。当 T1CS 为 0，指令时钟会被选择当作时钟源。当 T1CS 为 1，则是 EX_CK10 当做时钟源。当 EX_CK10 被选取，寄存器控制位 T1CE（T1CR2[4]）可决定 EX_CK10 的时钟触发沿。当 T1CE 是 1，EX_CK10 的下降沿将让定时器 1 计数减一。当 T1CE 是 0，EX_CK10 的上升沿将让定时器 1 计数减一。定时器 1 时钟源可以由预分频器 1 所分频。寄存器 /PS1EN（T1CR2[3]）为 0，可开启预分频器 1。寄存
器PS1SEL[2:0]（T1CR2[2:0]）可以决定其预分频比从 1:2 到 1:256。预分频器 1 的目前数值可以由读取寄存器PS1CV取得。

定时器 1 提供两种计数模式：单次计数与连续计数。当寄存器T1OS（T1CR1[2]）为 1，即为单次计数模式。定时器 1 从储存于寄存器TMR1[9:0]的初始值下数到 0x00，当下溢发生时，定时器 1 停止计数。当寄存器T1OS（T1CR1[2]）为 0，即为连续计数模式。当下溢发生，寄存器T1RL（T1CR1[1]）会决定计数的初始值。当T1RL为 1，定时器 1 从寄存器TMR1[9:0]重新载入数值作为初始值并继续下数。当T1RL为 0，定时器 1 以 0x3FF 作为初始值并继续下数。

当定时器 1 下溢，寄存器T1IF（INTF[3]）会被设定为 1，标明定时器 1 发生下溢中断。如果寄存器T1IE（INTE[3]）与GIE同时设定为 1，会发生中断请求且执行中断服务程序。直到程序写入 0 到 T1IF，T1IF 才会被清除。

定时器 1 时序图如下图所示：

![定时器 1 时序图](image)

图 17 定时器 1 时序图

当寄存器PWM1OEN（T1CR1[7]）设定为 1，PB3 为 PWM1 输出。当PWM1OEN为 1，PB3 会自动成为输出脚。PWM1 输出的有效状态是由寄存器PWM1OAL（T1CR1[6]）决定。当PWM1OAL为 1，PWM1 为低电平有效输出；PWM1OAL为 0，PWM1 为高电平有效输出。

PWM1 的占空比与帧率皆可编程的。占空比是由寄存器TMRH[1:0]和PWM1DUTY[7:0]决定。当PWM1DUTY[9:0]为 0，PWM1 无法输出占空比。当PWM1DUTY[9:0]为 0x3FF，PWM1 将输出 1023/1024 的占空比（当PWM1OAL为 0）。帧率是由TMRH[5:4] + TMR1[7:0]初始值所决定。因此，PWM1DUTY[9:0]数值必须小于或等于TMR1[9:0]。

先写入PWM1 高 2 位（TMRH[1:0]）再写入PWM1DUTY[7:0]时，就可更新PWM1DUTY[9:0]重载缓存寄存器。等到定时器 1 下溢后，PWM1DUTY[9:0]重载缓存寄存器才会写入PWM1DUTY[9:0]。

PWM1 的结构框图如下：
当寄存器BZ1EN（BZ1CR1[7]）设定成1且使能配置字节，PB3为蜂鸣器1输出。当BZ1EN设定为1，PB3会自动成为输出脚。BZ1的频率是由寄存器BZ1FSEL[3:0]（BZ1CR[3:0]）决定，可以选择从定时器1输出或预分频器1输出。当BZ1FSEL[3]为0，预分频器1输出被选择来产生BZ1输出。当BZ1FSEL[3]为1，定时器1输出被选来产生BZ1输出。预分频比的范围是1:2到1:256。蜂鸣器1结构框图如下所示:

![图18 PWM1结构框图](image)

注意：PB3复用引脚输出优先级为PWM1输出 > 蜂鸣器1输出。

3.8 定时器2/PWM2/Buzzer2

定时器2是具有预分频器2的10位下数定时器，其预分频比是可编程的。定时器2的输出可以被用于产生PWM2输出与蜂鸣器2输出。写入定时器2高两位（TMRH[7:6]）再写入TMR2[7:0]时，就可更新定时器2重载缓存寄存器。当T2EN=0时，定时器2重载缓存寄存器会立即写入定时器2。当T2EN=1时，会等到定时器2下溢后，定时器2重载缓存寄存器才会写入定时器2。读取寄存器TMR2[9:0]会显示定时器2目前计数数值的内容。

定时器2的结构框图如下图所示:

![图19 蜂鸣器1结构框图](image)
定时器 2 的操作可以由寄存器 T2EN（T2CR1[0]）开启或关闭。开启定时器 2 后，寄存器 T2CS（T2CR2[5]）可以决定时钟源是指令时钟 FInst 或外部时钟 EX_CK1。当 T2CS 为 0，指令时钟会被选择当做时钟源。当 T2CS 为 1，则是 EX_CK1 做为时钟源。当 EX_CK1 被选取，寄存器控制位 T2CE（T2CR2[4]）可决定 EX_CK1 的时钟触发沿。当 T2CE 是 1，EX_CK1 的上升沿将让定时器 2 计数减一。当 T2CE 是 0，EX_CK1 的下降沿将让定时器 2 计数减一。

定时器 2 时钟源可以由预分频器 2 所分频。寄存器 PS2EN（T2CR2[3]）为 0，可开启预分频器 2。寄存器 PS2SEL[2:0]（T2CR2[2:0]）可以决定其预分频比从 1:2 到 1:256。预分频器 2 的目前数值可以由读取寄存器 PS2CV 取得。

定时器 2 提供两种计数模式：单次计数与连续计数。当寄存器 T2OS（T2CR1[2]）为 1，即为单次计数模式。定时器 2 从储存于寄存器 TMR2[9:0] 的初始值下数到 0x00，当下溢发生时，定时器 2 停止计数。当寄存器 T2OS（T2CR1[2]）为 0，即为连续计数模式。当下溢发生，寄存器 T2RL（T2CR1[1]）会决定计数的初始值。当 T2RL 为 1，定时器 2 从寄存器 TMR2[9:0] 重新载入数值作为初始值并继续下数。当 T2RL 为 0，定时器 2 以 0x3FF 作为初始值并继续下数。

当定时器 2 下溢，寄存器 T2IF（INTF[5]）会被设定为 1，标明定时器 2 发生下溢中断。如果寄存器 T2IE（INTE[5]）与 GIE 同时设定为 1，会发生中断请求且执行中断服务程序。直到程序写入 0 到 T2IF，T2IF 才会被清除。

定时器 2 时序图如下图所示：

图 21 定时器 2 时序图
当寄存器PWM2OEN（T2CR1[7]）设定为1，PB2为PWM2输出。当PWM2OEN为1，PB2会自动成为输出脚。PWM2输出的有效状态是由寄存器PWM2OAL（T2CR1[6]）决定。当PWM2OAL为1，PWM2为低电平有效输出；PWM2OAL为0，PWM2为高电平有效输出。

PWM2的结构框图如下:

![PWM2结构框图](图22）

当寄存器BZ2EN（BZ2CR1[7]）设定成1且使能配置字节，PB2为蜂鸣器2输出。当BZ2EN设定为1，PB2会自动成为输出脚。BZ2的频率是由寄存器BZ2FSEL[3:0]（BZ2CR[3:0]）决定，可以选择从定时器2输出或预分频器2输出。当BZ2FSEL[3]为0，预分频器2输出被选来产生BZ2输出。当BZ2FSEL[3]为1，定时器2输出被选来产生BZ2输出。预分频比的范围是1:2到1:256。蜂鸣器2结构框图如下所示:

![蜂鸣器2结构框图](图23）
3.9 定时器 3/PWM3/Buzzer3/PWM4

定时器 3 是具有预分频器的 10 位下数定时器，其预分频比是可编程的。定时器 3 的输出可以被用于产生PWM3 输出。写入定时器 3 高 2 位（TM3RH[5:4]）再写入TMR3[7:0]时，就可更新定时器 3 重载缓存寄存器。当T3EN=0时，定时器 3 重载缓存寄存器会立即写入定时器 3。当T3EN=1 时，会等到定时器 3 下溢后，定时器 3 重载缓存寄存器才会写入定时器 3。读取寄存器TMR3[9:0]会显示定时器 3 目前计数值的内容。

定时器 3 的结构框图如下图所示：

![定时器 3 结构框图](image)

定时器 3 的操作可以由寄存器T3EN（T3CR1[0]）开启或关闭。开启定时器 3 后，寄存器T3CS（T3CR2[5]）可决定时钟源是指令时钟FINST或外部时钟EX_CKI1。当T3CS为 0，指令时钟会被选择当做时钟源。当T3CS为 1，则是EX_CKI1 当做时钟源。当EX_CKI1 被取，寄存器控制位T3CE（T3CR2[4]）可决定EX_CKI1 的时钟触发沿。当T3CE是 1，EX_CKI1 的上升沿将让定时器 3 计数减一。当T3CE是 0，EX_CKI1 的下降沿将让定时器 3 计数减一。定时器 3 时钟源可以由预分频器 3 所分频。寄存器 /PS3EN（T3CR2[3]）为 0，可开启预分频器 3。寄存器 PS3SEL[2:0]（T3CR2[2:0]）可以决定其预分频比从 1:2 到 1:256。预分频器 3 的目前数值可以由读取寄存器PS3CV取得。

定时器 3 提供两种计数模式：单次计数与连续计数。当寄存器T3OS（T3CR1[2]）为 1，即为单次计数模式。定时器 3 从储存在寄存器TMR3[9:0]的初始值下数到 0x00，当下溢发生时，定时器 3 停止计数。当寄存器T3OS（T3CR1[2]）为 0，即为连续计数模式。当下溢发生，寄存器T3RL（T3CR1[1]）会决定计数的初始值。当T3RL为 1，定时器 3 从寄存器TMR3[9:0]重新载入数值作为初始值并继续下数。当T3RL为 0，定时器 3 以 0x3FF作为初始值并继续下数。

当定时器 3 下溢，寄存器T3IF（INTE2[4]）会被设定为 1，标明定时器 3 发生下溢中断。如果寄存器T3IE（INTE2[0]）与GIE同时设定为 1，会发生中断请求且执行中断服务程序。直到程序写入 0 到T3IF，T3IF才会被清除。
定时器 3 时序图如下图所示:

定时器 3 结构框图如下图所示:

当寄存器PWM3OEN（T3CR1[7]）设定为 1，PA2 为 PWM3 输出。当PWM3OEN为 1，PA2 会自动成为输出脚。PWM3 输出的有效状态是由寄存器PWM3OAL（T3CR1[6]）决定。当PWM3OAL为 1，PWM3 为低电平有效输出；PWM3OAL为 0，PWM3 为高电平有效输出。

PWM 的结构框图如下：

图 25 定时器 3 结构框图

图 26 PWM3 结构框图
当寄存器 BZ3EN（BZ3CR[7]）设定成 1 且使能配置字节，PA2 为蜂鸣器 3 输出。当 BZ3EN 设定为 1，PA2 会自动成为输出脚。BZ3 的频率是由寄存器 BZ3FSEL[3:0]（BZ3CR[3:0]）决定，可以选择从定时器 3 输出或预分频器 3 输出。当 BZ3FSEL[3] 为 0，预分频器 3 输出被选择来产生 BZ3 输出。当 BZ3FSEL[3] 为 1，定时器 3 输出被选来产生 BZ3 输出。预分频比的范围是 1:2 到 1:256。蜂鸣器 3 结构框图如下所示：

![图 27 蜂鸣器 3 结构框图](image)

当寄存器 PWM4OEN（P4CR1[7]）设定为 1，PA3 或 PA7 为 PWM4 输出。当 PWM4OEN 为 1，PA3 或 PA7 会自动成为输出脚。PWM4 输出的有效状态是由寄存器 PWM4OAL（P4CR1[6]）决定。当 PWM4OAL 为 1，PWM4 为低电平有效输出；PWM4OAL 为 0，PWM4 为高电平有效输出。

PWM4 的结构框图如下：

![图 28 PWM4 结构框图](image)
3.10 RFC（电阻/频率转换器模式）

NY8B062E内置RFC功能，当开启RFC功能（RFCEN=1），选择的RFC输入引脚的电压电平将会控制定时器1的计数行为。只要RFC输入引脚电压低于VIL，定时器1将会持续计数，等到RFC输入引脚电压高于VIH，定时器1才会停止计数。下图显示RFC的功能模式：PSEL3~0用来选择RFC输入引脚。RFCEN用于在正常的使能信号T1EN和RFC选择的输入状态之间切换Timer1使能信号。

RFC模式的一个应用是测量电容-电阻充电时间，如下图所示。首先设置PA1输出0（低于VIL），接着设置TMR1[9:0]初始值后将PA1设置为输入引脚，定时器1会开始计数。当PA1引脚电压高于VIH时，定时器1会停止计数。下图显示 RFC 的功能模式：PSEL3~0 用来选择RFC输入引脚。

首先将PA1设置为输出低(PA1的电压放电为0)，下一步清除Timer1内容，将PA1设置为输入，开启RFC模式。然后Timer1开始计数，RC电路开始对PA1充电。当PA1引脚电压高于VIH时，定时器1会停止计数，定时器1相当于记录RC电路充电时间。

3.11 IR 载波

寄存器IREN（IRCR[0]）被设定为1后，PB1为红外线载波输出，而PB1会自动成为输出脚。当IREN清零，PB1将成为一般I/O脚。

红外线载波频率是由寄存器IRF57K（IRCR[1]）所选择。当IRF57K为1，红外线载波频率是57KHz。当IRF57K为0，频率是38KHz。由于红外载波频率是由F_HOSC的高频系统振荡推导出来的，所以当使用外晶体时，需要明确系统振荡的频率。寄存器位IROSC358M（IRCR[2]）用于向NY8B062E提供该信息。当IROSC358M为1时，外频频率为3.58MHz，当IROSC358M为0时，外频频率为455KHz。当采用内部高频振荡时，忽略该寄存器，并且为IR模块提供4MHz的时钟。

红外线载波的极性会根据PB1输出数据所决定。当寄存器IRCSEL（IRCR[2]）为1且PB1输出数据为0，红外线载波将由PB1输出。当寄存器IRCSEL（IRCR[2]）为0且PB1输出数据为1，红外线载波将由PB1输出。红外线载波的极性如下图所示：
3.12 低电压侦测（LVD）

NY8B062E内置准确的低电压侦测电路来侦测VDD电压水平。将LVDEN设为1（寄存器PCON[5]）后，当VDD电压低于下表LVDS[2:0]选择的电压值时，读取LVDOUT（寄存器PCON1[6]）会得到0。如果开启LVD中断使能位且GIE=1时，LVD中断标志位将会被设置为1，程序将跳入中断子程序。LVD结构框图如下：

下表为LVD电压选择表。

<table>
<thead>
<tr>
<th>LVDS[2:0]</th>
<th>电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>2.0V</td>
</tr>
<tr>
<td>001</td>
<td>2.2V</td>
</tr>
<tr>
<td>010</td>
<td>2.4V</td>
</tr>
<tr>
<td>011</td>
<td>2.7V</td>
</tr>
<tr>
<td>100</td>
<td>3.0V</td>
</tr>
<tr>
<td>101</td>
<td>3.3V</td>
</tr>
<tr>
<td>110</td>
<td>3.6V</td>
</tr>
<tr>
<td>111</td>
<td>4.3V</td>
</tr>
</tbody>
</table>

表2 LVD 电压选择

3.13 电压比较器

NY8B062E内置一组电压比较器。比较器的正输入源与负输入源和GPIO口复用，内部参考电压只能在P2V模式下提供给比较器的负输入源使用。

CMPEN（寄存器ANAEN[7]）用来开启或关闭比较器，在睡眠模式（Halt mode）中比较器将自动关闭。

P2V模式具有比较指定模拟板和指定参考板之间的电压的功能。P2V模式结构如下图所示:

![比较器P2V模式结构框图](image)

在P2V模式中，比较器正输入源由VS[3:0]用来选择内部参考电压 1/16 VDD ~ 15/16 VDD。表23 选择P2V模式中比较器负输入源的内部参考电压

<table>
<thead>
<tr>
<th>VS[3:0]</th>
<th>内部参考电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>P2P mode</td>
</tr>
<tr>
<td>0001</td>
<td>1/16 VDD</td>
</tr>
<tr>
<td>0010</td>
<td>2/16 VDD</td>
</tr>
<tr>
<td>0011</td>
<td>3/16 VDD</td>
</tr>
<tr>
<td>0100</td>
<td>4/16 VDD</td>
</tr>
<tr>
<td>0101</td>
<td>5/16 VDD</td>
</tr>
<tr>
<td>0110</td>
<td>6/16 VDD</td>
</tr>
<tr>
<td>0111</td>
<td>7/16 VDD</td>
</tr>
<tr>
<td>1000</td>
<td>8/16 VDD</td>
</tr>
<tr>
<td>1001</td>
<td>9/16 VDD</td>
</tr>
<tr>
<td>1010</td>
<td>10/16 VDD</td>
</tr>
<tr>
<td>1011</td>
<td>11/16 VDD</td>
</tr>
<tr>
<td>1100</td>
<td>12/16 VDD</td>
</tr>
<tr>
<td>1101</td>
<td>13/16 VDD</td>
</tr>
<tr>
<td>1110</td>
<td>14/16 VDD</td>
</tr>
<tr>
<td>1111</td>
<td>15/16 VDD</td>
</tr>
</tbody>
</table>

在P2V模式中，比较器正输入源由PS[3:0]（寄存器CMPCR[7:4]）用来选择PA3~0中一根引脚。
表格如下：

<table>
<thead>
<tr>
<th>PS[3:0]</th>
<th>引脚选择</th>
</tr>
</thead>
<tbody>
<tr>
<td>0000</td>
<td>PA0</td>
</tr>
<tr>
<td>0001</td>
<td>PA1</td>
</tr>
<tr>
<td>0010</td>
<td>PA2</td>
</tr>
<tr>
<td>0011</td>
<td>PA3</td>
</tr>
<tr>
<td>0100 ~ 1111</td>
<td>-</td>
</tr>
</tbody>
</table>

表 24 P2V 模式引脚选择

P2P模式中，比较器正/负输入源都为外部引脚。须设置 VS[3:0]=0，由 PS[3:0]来选择 4 种外部输入引脚组合。选择表格如下：

![图33 比较器P2P模式结构框图](image)

有三种方式可以取得比较器的比较结果。一是通过硬件中断设置，二是查询 CMPOUT（寄存器 OSCCR[7]），三是由 CMPO 引脚（PB3）输出。

使用比较器硬件中断功能时，须设置 CMPEN=1 与 CMPIE=1。先读取 CMPOUT（寄存器 OSCCR[7]）来清除上一次比较器比较结果，再清除中断标志位 CMPIF=0。等到下一次比较器输出翻转时，CMPIF 中断标志位将会被设置为 1。

设置 CMPOE（寄存器 OSCCR[6]）为 1，PB3 引脚将实时输出比较器结果，此时 PWM1 会自动关闭。
3.14 ADC模数转换器

NY8B062E提供11+1通道12位ADC模数转换器。可将模拟信号转换为12位数字值。ADC参考电压可选外部引脚PA0输入或由内部VDD, 4V, 3V, 2V提供。共有十一个外部模拟输入通道PA0~PA4引脚与PB0~PB5, 也可选择内部1/4VDD为模拟输入通道。ADC时钟（ADCLK）能够选择FINST/1, FINST/2, FINST/8或FINST/16四种。ADC采样时间可选择为1个ADCLK, 2个ADCLK, 4个ADCLK或8个ADCLK四种。先设置ADEN=1后须等待256us,再将START写1来启动ADC模数转换。寄存器EOC=0表示ADC还在转换中, EOC=1表示ADC已完成一次模数转换。如果寄存器ADIE=1与GIE设置为1，在EOC自0→1后，中断标志ADIF位将被硬件设为1并处理中断请求。结构框图如下:

![ADC结构框图](image)

3.14.1 ADC参考电压

ADC可选5种高参考电压, 可由寄存器ADVREFH来设置。这些高参考电压源是一个外部电压源(PA0)和四个内部电压源(VDD, 4V, 3V, 2V)。当EVHENB=1, ADC参考电压由引脚PA0提供。PA0输入的参考电压水平必须在VDD~2V之间。当EVHENB=0, ADC参考电压由VHS[1:0]决定。如果VHS[1:0] =11, ADC参考电压为VDD。如果VHS[1:0] =10, ADC参考电压为内部4V。如果VHS[1:0] =01, ADC参考电压为内部3V。如果VHS[1:0] =00, ADC参考电压为内部2V。引脚VDD电压水平不得低于选择的ADC内部参考电压（4V / 3V / 2V）。ADC模拟输入电压水平不得低于引脚VSS电压, 且不得高于ADC的参考电压。
ADC模拟输入信号电压必须从ADC低参考电压到ADC高参考电压。如果ADC模拟输入信号电压超过这个范围，ADC转换结果不是预期的值(满量程或零)。

<table>
<thead>
<tr>
<th>EVHENB</th>
<th>VHS[1:0]</th>
<th>参考电压</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>x x</td>
<td>PA0</td>
</tr>
<tr>
<td>0</td>
<td>1 1</td>
<td>VDD</td>
</tr>
<tr>
<td>0</td>
<td>1 0</td>
<td>4V</td>
</tr>
<tr>
<td>0</td>
<td>0 1</td>
<td>3V</td>
</tr>
<tr>
<td>0</td>
<td>0 0</td>
<td>2V</td>
</tr>
</tbody>
</table>

表 26 选择ADC参考电压

3.14.2 ADC 模拟输入通道

ADC依据CHS[3:0]与GCHS来选择模拟输入通道。GCHS为所有模拟输入通道的总开关，任何模拟输入通道在转换前必须将GCHS设置为1。

<table>
<thead>
<tr>
<th>GCHS</th>
<th>CHS[3:0]</th>
<th>ADC模拟输入通道</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>xxx</td>
<td>x</td>
</tr>
<tr>
<td>1</td>
<td>0000</td>
<td>PA0</td>
</tr>
<tr>
<td>1</td>
<td>0001</td>
<td>PA1</td>
</tr>
<tr>
<td>1</td>
<td>0010</td>
<td>PA2</td>
</tr>
<tr>
<td>1</td>
<td>0011</td>
<td>PA3</td>
</tr>
<tr>
<td>1</td>
<td>0100</td>
<td>PA4</td>
</tr>
<tr>
<td>1</td>
<td>0101</td>
<td>PB0</td>
</tr>
<tr>
<td>1</td>
<td>0110</td>
<td>PB1</td>
</tr>
<tr>
<td>1</td>
<td>0111</td>
<td>PB2</td>
</tr>
<tr>
<td>1</td>
<td>1000</td>
<td>PB3</td>
</tr>
<tr>
<td>1</td>
<td>1001</td>
<td>PB4</td>
</tr>
<tr>
<td>1</td>
<td>1010</td>
<td>PB5</td>
</tr>
<tr>
<td>1</td>
<td>1011</td>
<td>1 / 4 * VDD</td>
</tr>
<tr>
<td>1</td>
<td>11xx</td>
<td>N.C.</td>
</tr>
</tbody>
</table>

表 27 ADC模拟输入通道选择

除了设置PACON和ADCR[4:6]寄存器外，所选模拟输入引脚必须设置为输入模式，并且必须禁用内部的上拉/下拉，否则可能会影响模拟输入电平。
3.14.3 ADC时钟（ADCLK）、采样时钟（SHCLK）与位数选择

转换速度和转换精度受到ADC时钟(ADCLK)、采样时钟(SHCLK)和转换位数选择的影响。ADCLK是ADC的基本时钟。SAR ADC运行时，位操作与ADCLK同步。SHCLK是模拟信号采样时间的持续时间，SHCLK越大，恢复原始模拟信号电平越接近，但会降低ADC转换速度。反之亦然。ADC可以根据ADCR[1:0]寄存器位来选择不同的转换位数。有2位数字可供选择，分别是12位、10位和8位。转换位数越少，ADC转换速度越快，但有效ADC位数越少。转换位数越多，转换速度越慢，但精度越高。

ADC时钟来源于FINST，可从ADCK[1:0]进行选择。

<table>
<thead>
<tr>
<th>ADCK[1:0]</th>
<th>ADC时钟频率</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>FINST/16</td>
</tr>
<tr>
<td>0 1</td>
<td>FINST/8</td>
</tr>
<tr>
<td>1 0</td>
<td>FINST/1</td>
</tr>
<tr>
<td>1 1</td>
<td>FINST/2</td>
</tr>
</tbody>
</table>

表28 ADC时钟选择

采样时钟由ADCLK得到，可由SHCK[1:0]选择：

<table>
<thead>
<tr>
<th>SHCK[1:0]</th>
<th>ADC采样时间</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>1 ADCLK</td>
</tr>
<tr>
<td>0 1</td>
<td>2 ADCLK</td>
</tr>
<tr>
<td>1 0</td>
<td>4 ADCLK</td>
</tr>
<tr>
<td>1 1</td>
<td>8 ADCLK</td>
</tr>
</tbody>
</table>

表29 ADC采样时间选择

ADC位数选择来自ADCR[1:0]。

<table>
<thead>
<tr>
<th>ADCR[1:0]</th>
<th>ADC位数</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0</td>
<td>8-bit</td>
</tr>
<tr>
<td>0 1</td>
<td>10-bit</td>
</tr>
<tr>
<td>0 x</td>
<td>12-bit</td>
</tr>
</tbody>
</table>

表30 ADC位数选择

ADC转换时间从START（寄存器ADMD[6]）写1开始一直到EOC从0→1为止。持续时间取决于ADC分辨率、ADCLK时钟速率和采样时间宽度。

ADC转换时间 ≈ ADC采样时间 + (ADC位数 + 2) * ADC时钟周期。

下表为ADC在不同条件下的转换时间与转换周期。

<table>
<thead>
<tr>
<th>ADC位数</th>
<th>ADC时钟频率（ADCLK）</th>
<th>ADC采样时间（SHCLK）</th>
<th>ADC转换时间（AD时钟数）</th>
<th>FINST=2MHz</th>
<th>FINST=250K</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>转换时间</td>
<td>转换率</td>
</tr>
<tr>
<td>12</td>
<td>FINST/16</td>
<td>8 ADCLK</td>
<td>22</td>
<td>176us</td>
<td>5.68kHz</td>
</tr>
<tr>
<td>12</td>
<td>FINST/1</td>
<td>1 ADCLK</td>
<td>15</td>
<td>7.5us</td>
<td>133.3kHz</td>
</tr>
<tr>
<td>10</td>
<td>FINST/1</td>
<td>1 ADCLK</td>
<td>13</td>
<td>6.5us</td>
<td>153.8kHz</td>
</tr>
<tr>
<td>8</td>
<td>FINST/1</td>
<td>1 ADCLK</td>
<td>11</td>
<td>5.5us</td>
<td>181.8kHz</td>
</tr>
</tbody>
</table>

表31 ADC转换时间与转换率
3.14.4 ADC 操作顺序

依序设定ADC时钟（ADCLK），ADC采样时间（SHCLK），ADC位数（ADCR），ADC参考电压（寄存器ADVREFH），选择模拟输入通道并将寄存器PACON相应位设置为1，再将ADEN位设置为1。

在ADEN设置为1后必须等待256us（ADC电路启动时间），再将START位写1来启动ADC模数转换。ADC转换尚未完成时，读取EOC位会得到0。当ADC模数转换完成后会自动将EOC位设置为1。

3.15 看门狗定时器（WDT）

NY8B062E中有独立振荡器被WDT所使用。由于该振荡器与其它振荡电路无关，故在待机模式和睡眠模式中WDT仍能继续工作。

WDT能被配置字节开启或关闭。当WDT被配置字节开启时，仍然可以通过WDTEN位（寄存器PCON[7]）来开启/关闭。此外，WDT上溢后可由配置字节决定的复位NY8B062E或发出的中断请求。同时，在WDT上溢后，寄存器/TO（STATUS[4]）位将被清除为0。

WDT上溢的时基由配置字节决定，可以是3.5毫秒、15毫秒、60毫秒或250毫秒。如果将预分频器0分配给WDT，则可以延长上溢周期。通过将1写入寄存器PS0WDT位，预分频器0将分配给WDT。预分频器0对WDT的分频比由寄存器PS0SEL[2:0]位决定。如果WDT上溢将复位NY8B062E，分频速率从1:1到1:128，如果选为WDT中断时，则分频速率从1:2到1:256。

当预分频器0分配给WDT时，执行CLRWDT指令将清除WDT、预分频器0，并设置/TO标志位为1。

如果用户选择WDT中断机制，在WDT上溢后，寄存器WDTIF（INTF[6]）位将设置为1。如果寄存器WDTIE（INTE [6]）位和GIE位都设置为1，则可能产生中断请求，直到程序将0写入WDTIF，WDTIF才会被清除为0。

3.16 中断

NY8B062E提供二种中断：一种是软件中断，另一种是硬件中断。软件中断由执行指令INT来产生。硬件中断则有以下十一种：

- Timer0上溢中断。
- Timer1下溢中断。
- Timer2下溢中断。
- Timer3下溢中断。
- WDT中断。
- PA/PB输入状态改变中断。
- 外部中断0输入。
- 外部中断1输入。
- 低电压侦测中断。
- 比较器输出翻转中断。
- ADC模数转换完成中断。
GIE是总中断屏蔽位，必须为1才能使能硬件中断功能。GIE可以通过ENI指令设置1，通过DISI指令清除为0。
执行完指令INT后，无论GIE是置1还是清除为零，下一条指令都将从地址0x001读取。同时，GIE将由NY8B062E自动清除为零，这将防止嵌套中断的发生。软件中断的中断服务程序最后一条指令必须是RETIE，执行此指令将设置GIE为1并返回中断前程序执行序列。
当发生硬件中断时，相应的中断标志位将被设置为1。该位在程序将0写入该位之前不会清除为零。因此，用户可以通过轮呼相应的中断标志位得知哪个硬件引发中断。需注意只有当相应的中断使能位设置为1时，才能正确地读取相应的中断标志。如果相应的中断使能位设置为1，GIE也为1，将发生硬件中断，下一条指令将从0x008执行。同时，NY8B062E将自动清除寄存器GIE为零。如果用户想要实现嵌套中断，可以使用ENI指令作为中断服务程序的第一条指令，将GIE设置为1，并允许其他中断事件再次中断NY8B062E。指令RETIE必须是中断服务程序的最后一条指令，它将GIE设置为1并返回中断前程序执行序列。
用户应注意ENI指令不能放在RETIE指令之前，因为中断服务程序中的ENI指令将开启嵌套中断，但RETIE指令可能会误清除中断标志。

3.16.1 Timer0上溢中断

Timer0上溢（从0x00到0xFF），如果T0IE和GIE设置为1，寄存器T0IF位将被硬件设为1并处理此中断请求。

3.16.2 Timer1下溢中断

Timer1下溢（从0x3FF到0x00），如果T1IE和GIE设置为1，寄存器T1IF位将被硬件设为1并处理此中断请求。

3.16.3 Timer2下溢中断

Timer2下溢（从0x3FF到0x00），如果T2IE和GIE设置为1，寄存器T2IF位将被硬件设为1并处理此中断请求。

3.16.4 Timer3下溢中断

Timer3下溢（从0x3FF到0x00），如果T3IE和GIE设置为1，寄存器T3IF位将被硬件设为1并处理此中断请求。

3.16.5 看门狗超时中断

当WDT上溢且配置字节选择WDT超时中断时，如果WDTIE和GIE设置为1，寄存器WDTIF位将被硬件设为1并将处理此中断请求。

3.16.6 PA/PB输入状态改变中断

当PAX (0 ≤ x ≤ 7), PBY (0 ≤ y ≤ 5) 设置为输入口且相应的寄存器WUPAx、WUPBx位设置为1，且如果PABIE和GIE设置为1，当这些选定输入口上的状态变化时，寄存器PABIF位将被硬件设为1并处理此中断请求。需注意当PB0、PB1同时设置为状态变化中断和外部中断时，设置EIS0=1或EIS1=1将禁止PB0、PB1状态变化中断。
3.16.7 外部中断 0 输入
根据EIS0=1和寄存器INTEDG的配置，如果INT0IE和GIE设置为1，PB0引脚上的有效边沿触发会让寄存器INT0IF位将被硬件设为1并处理此中断请求。

3.16.8 外部中断 1 输入
根据EIS1=1和寄存器INTEDG的配置，如果INT1IE和GIE设置为1，PB1引脚上的有效边沿触发会让寄存器INT1IF位将被硬件设为1并处理此中断请求。

3.16.9 低电压侦测中断
当VDD电压水平低于LVD电压，读取LVDOUT（寄存器PCON1[6]）会得到0。如果LVDIE和GIE设置为1，寄存器LVDIF位将被硬件设为1并处理此中断请求。

3.16.10 比较器输出翻转中断
当比较器输出状态翻转时，如果CMPIE和GIE设置为1，寄存器CMPIF位将被硬件设为1并处理此中断请求。请先读取CMPOUT（寄存器OSCCR[7]）来清除上一次比较器比较结果。

3.16.11 ADC 模数转换完成中断
当ADC模数转换完成时，如果ADIE和GIE设置为1，寄存器ADIF位将被硬件设为1并处理此中断请求。

3.17 振荡器配置
因为NY8B062E是双时钟IC，有高振荡时钟（FHOSC）和低振荡时钟（FLOSC）可选择作为系统振荡时钟（FOSC）。可用作FHOSC的振荡器有内部高速RC振荡器（I_HRC）、外部高速晶体振荡器（E_HXT）与外部晶体振荡器（E_XT）。可用作FLOSC的振荡器是内部低速RC振荡器（I_LRC）与外部低速晶体振荡器（E_LXT）。
有两个配置字来确定哪个振荡器将被用作FHOSC。当I_HRC被选为FHOSC时，I_HRC输出频率由三个配置字节决定，它可以是1M、2M、4M、8M、16M或20MHz。此外，外部晶体振荡器引脚PA6和PA7可以用作I/O引脚。另一方面，根据一个配置字的设置，PA7可以是指令时钟的输出脚。如果FHOSC需要外部晶体，其频率范围从8MHz到20MHz，建议使用E_HXT。如果FHOSC需要外部晶体，其频率范围从455KHz到6MHz，推荐E_XT。当使用E_HXT或E_XT时，PA6/PA7不能被用作I/O引脚。它们必须用作晶体输出脚和输入脚。PA7是晶体输出脚(Xout)，PA6是晶体输入脚(Xin)。

有一个配置字来确定哪个振荡器将被用作FLOSC。当选择I_LRC时，它的频率集中在32768Hz。如果需要FLOSC外部晶体，则选择E_LXT，只允许32768Hz晶体。E_LXT时，不能使用PA6/PA7作为I/O引脚。它们必须用作晶体输出引脚和输入引脚。PA7为晶体输出引脚(Xout)，PA6为晶体输入引脚(Xin)。下面列出了FHOSC和FLOSC的双时钟组合。

<table>
<thead>
<tr>
<th>No.</th>
<th>FHOSC</th>
<th>FLOSC</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>I_HRC</td>
<td>I_LRC</td>
</tr>
<tr>
<td>2</td>
<td>E_HXT or E_XT</td>
<td>I_LRC</td>
</tr>
<tr>
<td>3</td>
<td>I_HRC</td>
<td>E_LXT</td>
</tr>
</tbody>
</table>

图 35 NY8B062E振荡配置结构图

表 32 双时钟组合
当E_HXT，E_XT或E_LXT作为其中一个振荡时，晶体或谐振器被连接到 Xin 和 Xout 以提供振荡。另外，为了提供可靠的振荡，建议一个电阻和两个电容连接如下图所示，参考晶体或谐振器的规格选用合适的C1或C2值。C1和C2的推荐值如下表所示。

<table>
<thead>
<tr>
<th>振荡模式</th>
<th>振荡频率(Hz)</th>
<th>C1, C2 (pF)</th>
</tr>
</thead>
<tbody>
<tr>
<td>E_HXT</td>
<td>16M</td>
<td>5 ~ 10</td>
</tr>
<tr>
<td></td>
<td>10M</td>
<td>5 ~ 30</td>
</tr>
<tr>
<td></td>
<td>8M</td>
<td>5 ~ 20</td>
</tr>
<tr>
<td>E_XT</td>
<td>4M</td>
<td>5 ~ 30</td>
</tr>
<tr>
<td></td>
<td>1M</td>
<td>5 ~ 30</td>
</tr>
<tr>
<td></td>
<td>455K</td>
<td>10 ~ 100</td>
</tr>
<tr>
<td>E_LXT</td>
<td>32768</td>
<td>5 ~ 30</td>
</tr>
</tbody>
</table>

表33 不同外部晶体振荡器频率所推荐的C1和C2电容器数值

对于2个时钟CPU周期模式下的20MHZ振荡器，C2必须接18pF电容。

为得到准确且稳定的32768Hz频率，选择正确的C1和C2电容器数值是相当重要的。每家晶振厂商数据手册中都有记载低速晶体振荡器的负载电容值(CL)，外接C1和C2电容器数值的计算如下公式：

C1=C2=2*CL-Cbt

其中Cbt是NY8B062E内部电容值，大约为5pF。假设低速晶体振荡器的负载电容值CL=12.5pF，依公式算出的C1=C2=20pF。

![图36 外部晶体振荡器的硬件连接图](image)

根据寄存器SELHOSC（OSCCR[0]）位的值，可以选择F_Hosc或F_Losc作为系统振荡时钟Fosc。当SELHOSC为1时，选择F_Hosc作为Fosc。当SELHOSC为0时，选择F_Losc作为Fosc。一旦确定Fosc，根据配置字节设置，指令时钟可以选择为Fosc/2或Fosc/4。
3.18 工作模式

NY8B062E提供了四种操作方式来定制各种应用和节省电力消耗，分别是正常模式、慢速模式、待机模式和睡眠模式。正常模式被指定为高速运行模式，慢速模式被指定为低速模式，以节省功耗。在待机模式下，NY8B062E将停止几乎所有的运作，可由定时器 0/1/2/3、看门狗来唤醒。在睡眠模式下，NY8B062E将睡眠直到外部事件或看门狗定时器来唤醒。

四种工作模式如下图所示。

![四种工作模式图](image-url)

图 37 四种工作模式
3.18.1 正常模式

发生任何复位事件并且复位过程完成后，NY8B062E将在正常模式或慢速模式下开始执行程序。重置过程后选择的模式由启动时钟配置字节决定。如果启动时钟为FHOSC，NY8B062E将进入正常模式，如果启动时钟为FLOSC，NY8B062E将进入慢性模式。在正常模式下，为提供最高性能而以FHOSC作为系统振荡时钟，其功耗在四种操作模式中将是最大的。在上电或任何重置触发器被释放后，待复位程序完成NY8B062E将进入正常模式。

- 指令的执行是基于FHOSC且所有硬件功能可以根据相应的硬件使能位来开启/关闭。
- FLOSC仍运行。
- IC可由写0至寄存器SELHOSC（OSCCR[0]）位切换为慢性模式。
- IC可通过寄存器OPMD[1:0]（OSCCR[3:2]）位切换为待机或睡眠模式。
- 关于实时时钟的应用，NY8B062E在运行正常模式时可同时将低频振荡时钟设为Timer0的时钟源，这是通过设置LCKTM0为1和配置字节中Timer0时钟源来实现。

3.18.2 慢速模式

通过写0至寄存器SELHOSC位，NY8B062E将进入慢性模式。在低速模式下，为节省功耗，FLOSC被选为系统振荡时钟。然而，FHOSC将不会自动被NY8B062E关闭。因此在慢性模式下，用户可写1至寄存器STPHOSC（OSCCR[1]）位来停止FHOSC进一步降低功耗。但需注意的是，禁止进入慢性模式同时停止FHOSC，必须先进入慢性模式，然后关闭FHOSC。

- 指令执行是基于FLOSC且所有硬件功能可以根据相应的硬件使能位来开启/关闭。
- 通过写1至寄存器STPHOSC位，FHOSC可以被停止。
- IC可通过寄存器OPMD[1:0]位切换为待机模式或睡眠模式。
- IC可通过写1至寄存器SELHOSC切换到正常模式。

3.18.3 待机模式

通过写入10b至寄存器OPMD[1:0]，NY8B062E将进入待机模式。然而，在待机模式下，FHOSC不会自动被NY8B062E关闭，用户必须进入先低速模式后写入1至寄存器STPHOSC位，以停止FHOSC。部分NY8B062E的硬件功能会被关闭，如T0EN / T1EN /T2EN/T3EN位被设置为1则定时器仍可运作。因此Timer0 / Timer1 / Timer2 / Timer3溢出后NY8B062E会被唤醒。

- 停止执行指令且一些硬件功能可以根据相应的硬件使能位来开启/关闭。
- 由写入1至寄存器STPHOSC位FHOSC可以被关闭。
- FLOSC仍保持运行。
- 如遇以下任一状况IC便能从待机模式唤醒：
 (a)Timer0 上溢中断 / Timer1 下溢中断 / Timer2 下溢中断 / Timer3 下溢中断 (b)看门狗超时中断 (c)PA/PB输入状态改变中断 (d)外部中断 0/1 (e)LVD中断 (f)比较器输出翻转中断 (g)ADC模数转换中断。
- 在从待机模式唤醒后，如SELHOSC=1，IC将回到正常模式，如SELHOSC=0则IC将回到慢性模式。
- 不建议在同一时间进入待机模式并改变振荡模式（正常到慢速/慢性到正常）。
3.18.4 睡眠模式
通过执行SLEEP指令或写入01b至寄存器OPMD[1:0]位，NY8B062E进入睡眠模式。在进入睡眠模式后，寄存器/PD（STATUS[3]）将清除为0，寄存器/TO（STATUS[4]）位将设置为1且清除WDT并保持运作。

在睡眠模式下，所有硬件功能是被关闭的，停止指令执行且NY8B062E只能通过一些特殊事件唤醒。因此，睡眠模式是NY8B062E最省电的模式。

- 指令执行停止，所有硬件功能关闭。
- FHOSC和FLOSC两者都自动关闭。
- 如遇以下任一状况IC便能从睡眠模式中唤醒：
 (a)看门狗超时中断 (b)PA/PB输入状态改变中断 (c)INT0/1外部中断。
- 从睡眠模式唤醒后，如SELHOSC=1，IC将回到正常模式，如SELHOSC=0则IC将回到慢速模式。

注意：您可以在同一指令中更改STPHOSC并进入睡眠模式。

- 不建议改变振荡模式（正常到慢速/慢速到正常），并在同一时间进入待机模式。

3.18.5 唤醒稳定时间
若外部晶体振荡器为系统振荡时钟来源，其睡眠模式的唤醒等待时间为512*Fosc，若内部RC振荡器为系统振荡时钟来源，其睡眠模式的唤醒等待时间为16*Fosc，由于待机模式下FHOSC或FLOSC仍在运行，因此无需为待机模式唤醒稳定时间。

在NY8B062E进入待机模式或睡眠模式之前，用户可以执行指令ENI。在唤醒后，NY8B062E将跳转到地址0x008，以便执行中断服务程序。如果在进入待机模式或睡眠模式之前执行DISI指令，则在唤醒后执行下一条指令。

3.18.6 工作模式概述

<table>
<thead>
<tr>
<th>模式</th>
<th>正常模式</th>
<th>慢速模式</th>
<th>待机模式</th>
<th>睡眠模式</th>
</tr>
</thead>
<tbody>
<tr>
<td>FHosc</td>
<td>使能</td>
<td>STPHOSC</td>
<td>STPHOSC</td>
<td>关闭</td>
</tr>
<tr>
<td>FLOsc</td>
<td>使能</td>
<td>使能</td>
<td>使能</td>
<td>关闭</td>
</tr>
<tr>
<td>Instruction Execution</td>
<td>执行</td>
<td>执行</td>
<td>停止</td>
<td>停止</td>
</tr>
<tr>
<td>Timer0/1/2/3</td>
<td>TxEN</td>
<td>TxEN</td>
<td>TxEN</td>
<td>关闭</td>
</tr>
<tr>
<td>WDT</td>
<td>配置和WDTEN</td>
<td>配置和WDTEN</td>
<td>配置和WDTEN</td>
<td>配置和WDTEN</td>
</tr>
<tr>
<td>其它硬件</td>
<td>硬件使能位</td>
<td>硬件使能位</td>
<td>硬件使能位</td>
<td>全部关闭</td>
</tr>
</tbody>
</table>

- 唤醒源
 - Timer0上溢
 - Timer1/2/3下溢
 - WDT超时
 - PA/PB输入状态改变
 - 外部中断0/1
 - LVD中断
 - 比较器中断
 - ADC中断
 - WDT超时
 - PA/PB输入状态改变
 - 外部中断0/1

表34 工作模式概述
3.19 复位

当以下任一复位事件发生时，NY8B062E将会进入复位状态并开始复位动作：

- 当VDD检测到上升沿时为上电复位。
- 当VDD电压低于预设的LVR电压时，为LVR复位。
- RSTb引脚为低电平。
- WDT超时复位。

此外，所有寄存器如果初始值未知时，寄存器将会被初始化为初始值或保持不变。状态位/TO和/PD可以根据复位事件来初始化。/TO和/PD的值及其相关的事件概述如下

<table>
<thead>
<tr>
<th>事件</th>
<th>/TO</th>
<th>/PD</th>
</tr>
</thead>
<tbody>
<tr>
<td>POR, LVR</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>非睡眠模式时发生RSTb复位</td>
<td>不变</td>
<td>不变</td>
</tr>
<tr>
<td>睡眠模式时发生RSTb复位</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>非睡眠模式时发生WDT复位</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>睡眠模式时发生WDT复位</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>执行SLEEP指令</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>执行CLRWDT指令</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

表35 /TO和/PD值和相关事件概述

复位事件发生后，NY8B062E将会开始复位进程。无论采用什么样的振荡器，它将等待一定的周期使振荡稳定。这个周期被称为上电复位时间，它由三位配置字节决定，这个时间可能是140us，4.5ms，18ms，72ms或288ms。

振荡器稳定后，NY8B062E将等待Fosc的16个时钟周期（OST，振荡器启动时间）后完成复位。若上电复位时间设为140us时，将等待Fosc的1个时钟周期后完成复位。若上电复位时间设为4.5ms，18ms，72ms或288ms时，将等待Fosc的16个时钟周期后完成复位。

如果VDD缓慢上升，建议使用RSTb复位功能，如下图。

- 建议R阻值不大于40KΩ。
- R1值=100Ω～1KΩ时，将阻止过大电流，ESD或电气过载信号进入复位引脚。
二极管D使电容C能在VDD下电时快速放电。

图 39 外部上电复位硬件连接图
4. 指令设置

NY8B062E为各种应用程序提供了55个强大的指令。

<table>
<thead>
<tr>
<th>指令</th>
<th>助记符</th>
<th>说明</th>
<th>周期数</th>
<th>影响标志</th>
</tr>
</thead>
<tbody>
<tr>
<td>算术指令</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>ANDAR</td>
<td>R d</td>
<td>dest = ACC & R</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>IORAR</td>
<td>R d</td>
<td>dest = ACC</td>
<td>R</td>
<td>1 Z</td>
</tr>
<tr>
<td>XORAR</td>
<td>R d</td>
<td>dest = ACC ⊕ R</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>ANDIA</td>
<td>i</td>
<td>ACC = ACC & i</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>IORIA</td>
<td>i</td>
<td>ACC = ACC</td>
<td>i</td>
<td>1 Z</td>
</tr>
<tr>
<td>XORIA</td>
<td>i</td>
<td>ACC = ACC ⊕ i</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>RRR</td>
<td>R d</td>
<td>Rotate right R</td>
<td>1 C</td>
<td></td>
</tr>
<tr>
<td>RLR</td>
<td>R d</td>
<td>Rotate left R</td>
<td>1 C</td>
<td></td>
</tr>
<tr>
<td>BSR</td>
<td>R bit</td>
<td>Set bit in R</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>BCR</td>
<td>R bit</td>
<td>Clear bit in R</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>INCR</td>
<td>R d</td>
<td>Increase R</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>DECR</td>
<td>R d</td>
<td>Decrease R</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>COMR</td>
<td>R d</td>
<td>dest = ~R</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>条件指令</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>BTRSC</td>
<td>R bit</td>
<td>Test bit in R, skip if clear</td>
<td>1 or 2 -</td>
<td></td>
</tr>
<tr>
<td>BTRSS</td>
<td>R bit</td>
<td>Test bit in R, skip if set</td>
<td>1 or 2 -</td>
<td></td>
</tr>
<tr>
<td>INCRSZ</td>
<td>R d</td>
<td>Increase R, skip if 0</td>
<td>1 or 2 -</td>
<td></td>
</tr>
<tr>
<td>DECRSZ</td>
<td>R d</td>
<td>Decrease R, skip if 0</td>
<td>1 or 2 -</td>
<td></td>
</tr>
<tr>
<td>数据传送指令</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>MOVAR</td>
<td>R</td>
<td>Move ACC to R</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>MOVR</td>
<td>R d</td>
<td>Move R</td>
<td>1 Z</td>
<td></td>
</tr>
<tr>
<td>MOVIA</td>
<td>i</td>
<td>Move immediate to ACC</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>SWAPR</td>
<td>R d</td>
<td>Swap halves R</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>IOST</td>
<td>F</td>
<td>Load ACC to F-page SFR</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>IOSTR</td>
<td>F</td>
<td>Move F-page SFR to ACC</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>SFUN</td>
<td>S</td>
<td>Load ACC to S-page SFR</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>SFUNR</td>
<td>S</td>
<td>Move S-page SFR to ACC</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>T0MD</td>
<td></td>
<td>Load ACC to T0MD</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>T0MDR</td>
<td></td>
<td>Move T0MD to ACC</td>
<td>1 -</td>
<td></td>
</tr>
<tr>
<td>TABLEA</td>
<td></td>
<td>Read ROM</td>
<td>2 -</td>
<td></td>
</tr>
</tbody>
</table>

表36 指令设置
ACC：累加器。
adr：地址。
bit：R-page中8位寄存器的位地址。
C：进位/借位。
 C=1，加法指令有进位，减法指令无借位。
 C=0，加法指令无进位，减法指令有借位。
d：目标。
 若d=“0”，结果存入ACC。
 若d=“1”，结果存入R寄存器。
DC：字节进位/借位标记。
dest：目标。
F：F页面特殊功能寄存器，F值为0x5~0xF。
i：8位立即数。
PC：程序计数器。
PCHBUF：程序计数器的高字节。
/PD：睡眠标志位。
 /PD=1，上电或CLRWDT指令执行后。
 /PD=0，SLEEP指令执行后。
Prescaler：预分频器。
R：R页面特殊功能寄存器，R值为0x00~0x7F。
S：S页面特殊功能寄存器，S值为0x0~0x15。
T0MD：T0MD寄存器。
TBHP：表格指针高字节寄存器。
TBHD：表格数据高字节寄存器。
/TO：看门狗超时标志位。
 /TO=1，上电或执行CLRWDT或SLEEP指令后。
 /TO=0，看门狗超时。
WDT：看门狗计时器。
Z：清零标志。
ADCAR
Add ACC and R with Carry

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>ADCAR R, d</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d = 0, 1.</td>
</tr>
<tr>
<td>操作</td>
<td>R + ACC + C → dest</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z, DC, C</td>
</tr>
<tr>
<td>说明</td>
<td>ACC和R带进位加法：若d="0"，结果存入ACC；若d="1"，结果存入"R"。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>ADCAR R, d</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x12, R=0x34, C=1, d=1,</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>R=0x47, ACC=0x12, C=0.</td>
</tr>
</tbody>
</table>

ADDAR
Add ACC and R

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>ADDAR R, d</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d = 0, 1.</td>
</tr>
<tr>
<td>操作</td>
<td>ACC + R → dest</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z, DC, C</td>
</tr>
<tr>
<td>说明</td>
<td>ACC和R加法：若d="0"，结果存入ACC；若d="1"，结果存入"R"。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>ADDAR R, d</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x12, R=0x34,C=1, d=1,</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>R=0x46, ACC=0x12, C=0.</td>
</tr>
</tbody>
</table>

ADCIA
Add ACC and Immediate with Carry

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>ADCIA i</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ i < 255</td>
</tr>
<tr>
<td>操作</td>
<td>ACC + i + C → ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z, DC, C</td>
</tr>
<tr>
<td>说明</td>
<td>ACC和8位立即数带进位加法，结果存入ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>ADCIA i</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x12, i=0x34, C=1</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x47, C=0</td>
</tr>
</tbody>
</table>

ADDIA
Add ACC and Immediate

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>ADDIA i</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ i < 255</td>
</tr>
<tr>
<td>操作</td>
<td>ACC + i → ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z, DC, C</td>
</tr>
<tr>
<td>说明</td>
<td>ACC和8位立即数加法，结果存入ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>ADDIA i</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x12, i=0x34, C=1</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x46, C=0.</td>
</tr>
</tbody>
</table>
ANDAR

AND ACC and R

<table>
<thead>
<tr>
<th>语言</th>
<th>ANDAR R, d</th>
</tr>
</thead>
</table>
| 操作数 | $0 \leq R \leq 127$
| | $d = 0, 1$. |
| 操作 | $\text{ACC} \& R \rightarrow \text{dest}$ |
| 状态影响 | Z |
| 说明 | ACC和R做“AND”运算；若$d=0$，结果存入ACC；若$d=1$，结果存入“R” |

周期	1
举例	ANDAR R, d
执行指令前：	ACC=0x5A, R=0xAF, d=1.
执行指令后：	R=0x0A, ACC=0x5A, Z=0.

BCR

Clear Bit in R

<table>
<thead>
<tr>
<th>语言</th>
<th>BCR R, bit</th>
</tr>
</thead>
</table>
| 操作数 | $0 \leq R \leq 127$
| | $0 \leq \text{bit} \leq 7$ |
| 操作 | $\text{0} \rightarrow R[\text{bit}]$ |
| 状态影响 | -- |
| 说明 | 将R寄存器的bit位(0~7)清0。 |
| 周期 | 1 |
| 举例 | BCR R, B2 |
| 执行指令前： | R=0x5A, B2=0x3, |
| 执行指令后： | R=0x52. |

ANDIA

AND Immediate with ACC

<table>
<thead>
<tr>
<th>语言</th>
<th>ANDIA i</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>$0 \leq i \leq 255$</td>
</tr>
<tr>
<td>操作</td>
<td>$\text{ACC} & i \rightarrow \text{ACC}$</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>ACC和8位立即数做“AND”运算。</td>
</tr>
</tbody>
</table>

周期	1
举例	ANDIA i
执行指令前：	ACC=0x5A, i=0xAF,
执行指令后：	ACC=0x0A, Z=0.

BSR

Set Bit in R

<table>
<thead>
<tr>
<th>语言</th>
<th>BSR R, bit</th>
</tr>
</thead>
</table>
| 操作数 | $0 \leq R \leq 127$
| | $0 \leq \text{bit} \leq 7$ |
| 操作 | $\text{1} \rightarrow R[\text{bit}]$ |
| 状态影响 | -- |
| 说明 | 设置R寄存器的bit位为1。 |
| 周期 | 1 |
| 举例 | BSR R, B2 |
| 执行指令前： | R=0x5A, B2=0x2, |
| 执行指令后： | R=0x5E. |
BTRSC
语法
BTRSC R, bit

操作数

<table>
<thead>
<tr>
<th>R</th>
<th>0 ≤ R ≤ 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0 ≤ bit ≤ 7</td>
</tr>
</tbody>
</table>

操作
Skip next instruction, if R[bit] = 0.

状态影响
--

说明
位判断指令，为"0"则跳过下一条指令。

周期
1 or 2（跳过）

举例
BTRSC R, B2
指令 1
指令 2
执行指令前：
 R=0x5A, B2=0x2,
执行指令后：
由于R[B2]=0，则指令 1 不执行，
程序直接从指令 2 开始执行。

BTRSS
语法
BTRSS R, bit

操作数

<table>
<thead>
<tr>
<th>R</th>
<th>0 ≤ R ≤ 127</th>
</tr>
</thead>
<tbody>
<tr>
<td>bit</td>
<td>0 ≤ bit ≤ 7</td>
</tr>
</tbody>
</table>

操作
Skip next instruction, if R[bit] = 1.

状态影响
--

说明
位判断指令，为"1"则跳过下一条指令。

周期
1 or 2（跳过）

举例
BTRSS R, B2
指令 2
指令 3
执行指令前：
 R=0x5A, B2=0x3,
执行指令后：
由于R[B2]=1，则指令 2 不执行，
直接从指令 3 开始执行。

CALLA
语法
CALLA

操作数
--

操作
PC + 1 → Top of Stack
{TBHP, ACC} → PC

状态影响
--

说明
子程序调用。首先将返回地址PC+1压入栈顶，然后将TBHP[2:0]赋值给PC[10:8]，将ACC赋值给PC[7:0]。

周期
2

举例
CALLA
执行指令前：
 TBHP=0x02, ACC=0x34. PC=A0. Stack pointer=1.
执行指令后：
 PC=0x234, Stack[1]=A0+1, Stack pointer=2

CLRA
语法
CLRA

操作数
--

操作
00h → ACC
1 → Z

状态影响
Z

说明
ACC清零，Z标志位置"1"。

周期
1

举例
CLRA
执行指令前：
 ACC=0x55, Z=0.
执行指令后：
 ACC=0x00, Z=1.
CLRR Clear R

<table>
<thead>
<tr>
<th>语法</th>
<th>CLRR R</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td>操作</td>
<td>00h → R</td>
</tr>
<tr>
<td></td>
<td>1 → Z</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>寄存器R清零，Z标志位置“1”。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>CLRR R</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>R=0x55, Z=0.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>R=0x00, Z=1.</td>
</tr>
</tbody>
</table>

COMR Complement R

<table>
<thead>
<tr>
<th>语法</th>
<th>COMR R, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d = 0, 1.</td>
</tr>
<tr>
<td>操作</td>
<td>~R → dest</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>R寄存器取反，结果存入d:</td>
</tr>
<tr>
<td></td>
<td>d="0"，结果存入ACC:</td>
</tr>
<tr>
<td></td>
<td>d="1"，结果存入R。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>COMR, d</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>R=0xA6, d=1, Z=0.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>R=0x59, Z=0.</td>
</tr>
</tbody>
</table>

CLRWDT Clear Watch-Dog Timer

<table>
<thead>
<tr>
<th>语法</th>
<th>CLRWDT</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>～</td>
</tr>
<tr>
<td>操作</td>
<td>00h → WDT,</td>
</tr>
<tr>
<td></td>
<td>00h → WDT prescaler</td>
</tr>
<tr>
<td></td>
<td>1 → /TO</td>
</tr>
<tr>
<td></td>
<td>1 → /PD</td>
</tr>
<tr>
<td>状态影响</td>
<td>/TO, /PD</td>
</tr>
<tr>
<td>说明</td>
<td>清WDT计数器和预分频器：/TO和/PD标志位置“1”。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>CLRWDT</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>/TO=0</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>/TO=1</td>
</tr>
</tbody>
</table>

CMPAR Compare ACC and R

<table>
<thead>
<tr>
<th>语法</th>
<th>CMPAR R</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td>操作</td>
<td>R - ACC → (No restore)</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z, C</td>
</tr>
<tr>
<td>说明</td>
<td>ACC和R比较：执行R-ACC，不改变ACC和R的值，只改变Z和C标志位。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>CMPAR R</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>R=0x34, ACC=12, Z=0, C=0.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>R=0x59, ACC=12, Z=0, C=1.</td>
</tr>
</tbody>
</table>
DAA

语法

DAA

操作数

--

操作

ACC(hex) → ACC(dec)

状态影响

C

说明

将累加器中的16进制数调整为十进制数，该指令必须紧跟在加法指令后。

周期

1

举例

执行指令前:

ACC=0x28, R=0x25, d=0.

执行指令后:

ACC=0x53, C=0.

DECRSZ

语法

DECRSZ R, d

操作数

0 ≤ R ≤ 127

d = 0, 1.

操作

R - 1 → dest,

Skip if result = 0

状态影响

--

说明

R 先- 1，若 d="0"，结果存入 ACC；
若 d="1"，结果存入 R，若结果为 "0" 则跳过下一条指令，改为执行 NOP 指令，因此结果为 "0" 时要执行两个周期。

周期

1 or 2（跳过）

举例

执行指令前:

R=0x1, d=1, Z=0.

执行指令后:

R=0x0, Z=1

操作结果为 0，指令 2 被跳过。

DISI

语法

DISI

操作数

--

操作

Disable Interrupt, 0 → GIE

状态影响

--

说明

GIE设置为 0，关闭总中断。

周期

1

举例

执行指令前:

GIE=1.

执行指令后:

GIE=0.
ENI
Enable Interrupt Globally

<table>
<thead>
<tr>
<th>语法</th>
<th>ENI</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>Enable Interrupt, 1 → GIE</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>GIE设置为 1，开启总中断。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td></td>
</tr>
</tbody>
</table>

示例
执行指令前:
GIE=0
执行指令后:
GIE=1.

INCR
Increase R

<table>
<thead>
<tr>
<th>语法</th>
<th>INCR</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td>操作</td>
<td>d = 0, 1.</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>R + 1，若d="0"，结果存入ACC；若d="1"，结果存入R。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td></td>
</tr>
</tbody>
</table>

示例
INCR R, d
执行指令前:
R=0xFF, d=1, Z=0.
执行指令后:
R=0x00, Z=1.

GOTOA
Unconditional Branch

<table>
<thead>
<tr>
<th>语法</th>
<th>GOTOA</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>{TBHP, ACC} → PC</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>无条件跳转指令，ACC值写入PC[7:0]；TBHP[2:0]值写入PC[10:8]。</td>
</tr>
<tr>
<td>周期</td>
<td>2</td>
</tr>
<tr>
<td>举例</td>
<td></td>
</tr>
</tbody>
</table>

示例
GOTOA
执行指令前:
PC=A0, TBHP=0x02, ACC=0x34.
执行指令后:
PC=0x234

INCRSZ
Increase R, Skip if 0

<table>
<thead>
<tr>
<th>语法</th>
<th>INCRSZ</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td>操作</td>
<td>d = 0, 1.</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>R先+1，若d="0"，结果存入ACC；若d="1"，结果存入R。若结果为"0"则跳过下一条指令（执行NOP指令）</td>
</tr>
<tr>
<td>周期</td>
<td>1 or 2（跳过）</td>
</tr>
<tr>
<td>举例</td>
<td></td>
</tr>
</tbody>
</table>

示例
INCRSZ R, d
执行指令前:
R=0xFF, d=1, Z=0.
执行指令后:
R=0x00, Z=1，因结果为 0，程序跳过指令 2。
INT

<table>
<thead>
<tr>
<th>语法</th>
<th>INT</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>PC + 1 → Top of Stack, 001h → PC</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>软中断指令。首先将返回地址 (PC+1) 压入栈顶，然后将 001H 的地址装入PC[10:0].</td>
</tr>
<tr>
<td>周期</td>
<td>3</td>
</tr>
<tr>
<td>举例</td>
<td>INT</td>
</tr>
<tr>
<td>执行指令前:</td>
<td>PC=address of INT code</td>
</tr>
<tr>
<td>执行指令后:</td>
<td>PC=0x01</td>
</tr>
</tbody>
</table>

INT

<table>
<thead>
<tr>
<th>操作数</th>
<th>--</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作</td>
<td>ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>ACC 和 8 位立即数做“OR”运算，结果存入ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>IORIA i</td>
</tr>
<tr>
<td>执行指令前:</td>
<td>i=0x50, ACC=0xAA, Z=0.</td>
</tr>
<tr>
<td>执行指令后:</td>
<td>ACC=0xFA, Z=0.</td>
</tr>
</tbody>
</table>

IORIA

<table>
<thead>
<tr>
<th>操作数</th>
<th>0 ≤ i < 255</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作</td>
<td>ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>ACC 和 8 位立即数做“OR”运算，结果存入ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>IORIA i</td>
</tr>
<tr>
<td>执行指令前:</td>
<td>i=0x50, ACC=0xAA, Z=0.</td>
</tr>
<tr>
<td>执行指令后:</td>
<td>ACC=0xFA, Z=0.</td>
</tr>
</tbody>
</table>

IOST

<table>
<thead>
<tr>
<th>操作数</th>
<th>5 ≤ F ≤ 15</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作</td>
<td>ACC → F-page SFR</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>将ACC的值赋给F-page特殊寄存器</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>IOST F</td>
</tr>
<tr>
<td>执行指令前:</td>
<td>F=0x55, ACC=0xAA.</td>
</tr>
<tr>
<td>执行指令后:</td>
<td>F=0xAA, ACC=0xAA.</td>
</tr>
</tbody>
</table>
IOSTR
Move F-page SFR to ACC

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>IOSTR F</td>
</tr>
<tr>
<td>操作数</td>
<td>5 ≤ F ≤ 15</td>
</tr>
<tr>
<td>操作</td>
<td>F-page SFR → ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>将F-page特殊寄存器数值给ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
</tbody>
</table>
| **举例** | IOSTR F
执行指令前:
F=0x55, ACC=0xAA.
执行指令后:
F=0x55, ACC=0x55. |

LGOTO
Unconditional Branch

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>LGOTO adr</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ adr ≤ 2047</td>
</tr>
<tr>
<td>操作</td>
<td>adr → PC[10:0].</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>无条件长跳转，11位立即数写入PC[10:0].</td>
</tr>
<tr>
<td>周期</td>
<td>2</td>
</tr>
</tbody>
</table>
| **举例** | LGOTO Level
执行指令前:
PC=A0. Stack level=1
执行指令后:
PC=address of Level. |

LCALL
Call Subroutine

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>LCALL adr</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ adr ≤ 2047</td>
</tr>
</tbody>
</table>
| **操作** | PC + 1 → Top of Stack,
adr → PC[10:0] |
| **状态影响** | -- |
| **说明** | 长调用子程序。首先将PC+1压入栈顶，然后将11位立即数载入PC[10:0]. |
| **周期** | 2 |
| **举例** | LCALL SUB
执行指令前:
PC=A0. Stack level=1
执行指令后:
PC=address of SUB, Stack[1]=A0+1, Stack pointer =2. |

MOVAR
Move ACC to R

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>语法</td>
<td>MOVAR R</td>
</tr>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td>操作</td>
<td>ACC → R</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>ACC赋值给R-page寄存器</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
</tbody>
</table>
| **举例** | MOVAR R
执行指令前:
R=0x55, ACC=0xAA.
执行指令后:
R=0xAA, ACC=0xAA. |
MOVIA Move Immediate to ACC

<table>
<thead>
<tr>
<th>语法</th>
<th>MOVIA i</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ i < 255</td>
</tr>
<tr>
<td>操作</td>
<td>i → ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>8 位立即数赋值给ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>MOVIA i</td>
</tr>
<tr>
<td></td>
<td>执行指令前：i=0x55, ACC=0xAA.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：ACC=0x55.</td>
</tr>
</tbody>
</table>

NOP No Operation

<table>
<thead>
<tr>
<th>语法</th>
<th>NOP</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>No operation.</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>空操作。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>NOP</td>
</tr>
<tr>
<td></td>
<td>执行指令前：PC=A0</td>
</tr>
<tr>
<td></td>
<td>执行指令后：PC=A0+1</td>
</tr>
</tbody>
</table>

MOVR Move R to ACC or R

<table>
<thead>
<tr>
<th>语法</th>
<th>MOVR R, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127 d = 0, 1.</td>
</tr>
<tr>
<td>操作</td>
<td>R → dest</td>
</tr>
<tr>
<td>状态影响</td>
<td>Z</td>
</tr>
<tr>
<td>说明</td>
<td>R-page寄存器赋值给d，若d=“0”，结果存入ACC；若d=“1”，结果存入寄存器R。指令执行后，通过状态标志位Z检查R是否为0。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>MOVR R, d</td>
</tr>
<tr>
<td></td>
<td>执行指令前：R=0x0, ACC=0xAA, Z=0, d=0.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：R=0x0, ACC=0x00, Z=1.</td>
</tr>
</tbody>
</table>

RETIE Return from Interrupt and Enable Interrupt Globally

<table>
<thead>
<tr>
<th>语法</th>
<th>RETIE</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>Top of Stack → PC 1 → GIE</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>中断返回，栈顶地址载入PC同时使能中断。</td>
</tr>
<tr>
<td>周期</td>
<td>2</td>
</tr>
<tr>
<td>举例</td>
<td>RETIE</td>
</tr>
<tr>
<td></td>
<td>执行指令前：GIE=0, Stack level=2.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：GIE=1, PC=Stack[2], Stack pointer=1.</td>
</tr>
</tbody>
</table>
RETIA
Return with Data in ACC

语法
RETIA

操作数
0 ≤ i < 255

操作
i → ACC,
Top of Stack → PC

状态影响
--

说明
带参数返回：8位立即数赋值给ACC，栈顶地址载入PC。

周期
2

举例
执行指令前:
Stack pointer = 2. i = 0x55, ACC = 0xAA.

执行指令后:
PC = Stack[2], Stack pointer = 1. ACC = 0x55.

RRR
Rotate Right R Through Carry

语法
RRR

操作数
0 ≤ R ≤ 127
d = 0, 1.

操作
C → dest[7], R[7:1] → dest[6:0], R[0] → C

状态影响
C

说明
带进位R循环右移：若d="0"，结果存入ACC；若d="1"，结果存入R。

周期
1

举例
执行指令前:
R = 0xA5, d = 1, C = 0.

执行指令后:
R = 0x52, C = 1.

RLR
Rotate Left R Through Carry

语法
RLR

操作数
0 ≤ R ≤ 127
d = 0, 1.

操作
C → dest[0], R[7] → C,
R[6:0] → dest[7:1]

状态影响
C

说明
带进位R循环左移：若d="0"，结果存入ACC；若d="1"，结果存入R。

周期
1

举例
执行指令前:
R = 0xA5, d = 1, C = 0.

执行指令后:
R = 0x52, C = 1.
SBCAR

语法

SBCAR R, d

操作数

0 ≤ R ≤ 127

d = 0, 1.

操作

R + (~ACC) + C → dest

状态影响

Z, DC, C

说明

R和ACC带借位减法，若d=“0”，结果存入ACC；若d=“1”，结果存入R。

<table>
<thead>
<tr>
<th>周期</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>举例</td>
<td>SBCAR R, d</td>
</tr>
</tbody>
</table>

(a) 执行指令前：
R=0x05, ACC=0x06, d=1, C=0,
执行指令后：
R=0xFE, C=0. (-2)
(b) 执行指令前：
R=0x05, ACC=0x06, d=1, C=1,
执行指令后：
R=0xFF, C=0. (-1)
(c) 执行指令前：
R=0x06, ACC=0x05, d=1, C=0,
执行指令后：
R=0x00, C=1. (-0), Z=1.
(d) 执行指令前：
R=0x06, ACC=0x05, d=1, C=1,
执行指令后：
R=0x1, C=1. (+1)

SBCIA

语法

SBCIA i

操作数

0 ≤ i < 255

操作

i + (~ACC) + C → dest

状态影响

Z, DC, C

说明

常数和ACC带借位减法，结果存入ACC。

<table>
<thead>
<tr>
<th>周期</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>举例</td>
<td>SBCIA i</td>
</tr>
</tbody>
</table>

(a) 执行指令前：
i=0x05, ACC=0x06, C=0,
执行指令后：
ACC=0xFE, C=0. (-2)
(b) 执行指令前：
i=0x05, ACC=0x06, C=1,
执行指令后：
ACC=0xFF, C=0. (-1)
(c) 执行指令前：
i=0x06, ACC=0x05, C=0,
执行指令后：
ACC=0x00, C=1. (-0), Z=1.
(d) 执行指令前：
i=0x06, ACC=0x05, C=1,
执行指令后：
ACC=0x1, C=1. (+1)

SFUN

语法

SFUN S

操作数

0 ≤ S ≤ 21

操作

ACC → S-page SFR

状态影响

--

说明

ACC写到S-page特殊寄存器

<table>
<thead>
<tr>
<th>周期</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>举例</td>
<td>SFUN S</td>
</tr>
</tbody>
</table>

执行指令前：
S=0x55, ACC=0xAA.
执行指令后：
S=0xAA, ACC=0xAA.
SFUNR	Move S-page SFR to ACC
语法 | SFUNR S
操作数 | 0 ≤ S ≤ 21
操作 | S-page SFR → ACC
状态影响 | --
说明 | 读S-page特殊寄存器到ACC
周期 | 1
举例 | SFUNR S
执行指令前：
S=0x55, ACC=0xAA.
执行指令后：
S=0x55, ACC=0x55.

SUBAR	Subtract ACC from R
语法 | SUBAR R, d
操作数 | 0 ≤ R ≤ 127
d = 0, 1.
操作 | R – ACC → dest
状态影响 | Z, DC, C
说明 | R 减去ACC；若d="0"，结果存入ACC。若d="1"，结果存入R。
周期 | 1
举例 | SUBAR R, d
(a) 执行指令前：
R=0x05, ACC=0x06, d=1,
执行指令后：
R=0xFF, C=0. (-1)
(b) 执行指令前：
R=0x06, ACC=0x05, d=1,
执行指令后：
R=0x01, C=1. (+1)

SLEEP	Enter Halt Mode
语法 | SLEEP
操作数 | --
操作 | 00h → WDT,
00h → WDT prescaler
1 → /TO
0 → /PD
状态影响 | /TO, /PD
说明 | WDT和分频器 0 清零。/TO标志为0，/PD清零，IC进入睡眠。
周期 | 1
举例 | SLEEP
执行指令前：
/PD=1, /TO=0.
执行指令后：
/PD=0, /TO=1.

SUBIA	Subtract ACC from Immediate
语法 | SUBIA i
操作数 | 0 ≤ i < 255
操作 | i – ACC → ACC
状态影响 | Z, DC, C
说明 | 8 位立即数减ACC，结果存入ACC。
周期 | 1
举例 | SUBIA i
(a) 执行指令前：
i=0x05, ACC=0x06.
执行指令后：
ACC=0xFF, C=0. (-1)
(b) 执行指令前：
i=0x06, ACC=0x05, d=1,
执行指令后：
ACC=0x01, C=1. (+1)
SWAPR Swap High/Low Nibble in R

<table>
<thead>
<tr>
<th>语法</th>
<th>SWAPR R, d</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>0 ≤ R ≤ 127</td>
</tr>
<tr>
<td></td>
<td>d = 0, 1</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>寄存器半字节交换，若d="0"，结果存入ACC；若d="1"，结果存入R。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>SWAP R, d</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>R=0xA5, d=1.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>R=0xA5.</td>
</tr>
</tbody>
</table>

T0MD Load ACC to T0MD

<table>
<thead>
<tr>
<th>语法</th>
<th>T0MD</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>ACC → T0MD</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>ACC写入T0MD寄存器。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>T0MD</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>T0MD=0x55, ACC=0xAA.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>T0MD=0xAA.</td>
</tr>
</tbody>
</table>

TABLEA Read ROM data

<table>
<thead>
<tr>
<th>语法</th>
<th>TABLEA</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>ROM data{ TBHP, ACC } [7:0] → ACC, ROM data{TBHP, ACC} [13:8] → TBHD.</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>ROM查表指令，高字节存入TBHD，低字节存入ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>2</td>
</tr>
<tr>
<td>举例</td>
<td>TABLEA</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>TBHP=0x02, CC=0x34.</td>
</tr>
<tr>
<td></td>
<td>TBHD=0x01.</td>
</tr>
<tr>
<td></td>
<td>ROM data[0x234]= 0x35AA</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>TBHD=0x35, ACC=0xAA.</td>
</tr>
</tbody>
</table>

T0MDR Move T0MD to ACC

<table>
<thead>
<tr>
<th>语法</th>
<th>T0MDR</th>
</tr>
</thead>
<tbody>
<tr>
<td>操作数</td>
<td>--</td>
</tr>
<tr>
<td>操作</td>
<td>T0MD → ACC</td>
</tr>
<tr>
<td>状态影响</td>
<td>--</td>
</tr>
<tr>
<td>说明</td>
<td>读T0MD寄存器到ACC。</td>
</tr>
<tr>
<td>周期</td>
<td>1</td>
</tr>
<tr>
<td>举例</td>
<td>T0MDR</td>
</tr>
<tr>
<td></td>
<td>执行指令前：</td>
</tr>
<tr>
<td></td>
<td>T0MD=0x55, ACC=0xAA.</td>
</tr>
<tr>
<td></td>
<td>执行指令后：</td>
</tr>
<tr>
<td></td>
<td>ACC=0x55.</td>
</tr>
</tbody>
</table>
XORAR

Exclusive-OR ACC with R

- **语法**
 XORAR R, d

- **操作数**
 0 ≤ R ≤ 127
d = 0, 1.

- **操作**
 ACC ⊕ R → dest

- **状态影响**
 Z

- **说明**
 ACC 和 R 做“XOR”运算，若 d=“0”，结果存入 ACC；若 d=“1”，结果存入 R。

- **周期**
 1

- **举例**
 XORAR R, d
 执行指令前：
 R=0xA5, ACC=0xF0, d=1.
 执行指令后：
 R=0x55.

XORIA

Exclusive-OR Immediate with ACC

- **语法**
 XORIA i

- **操作数**
 0 ≤ i < 255

- **操作**
 ACC ⊕ i → ACC

- **状态影响**
 Z

- **说明**
 ACC 和 8 位立即数做“XOR”运算。

- **周期**
 1

- **举例**
 XORIA i
 执行指令前：
 i=0xA5, ACC=0xF0.
 执行指令后：
 ACC=0x55.
5. 配置字节表

<table>
<thead>
<tr>
<th>项目</th>
<th>名称</th>
<th>选项</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>High Oscillator Frequency 高频振荡模式</td>
<td>1. I_HRC 2. E_HXT 3. E_XT</td>
</tr>
<tr>
<td>2</td>
<td>Low Oscillator Frequency 低频振荡模式</td>
<td>1. I_LRC 2. E_LXT</td>
</tr>
<tr>
<td>3</td>
<td>High IRC Frequency 内部高速 RC 频率</td>
<td>1. 1MHz 2. 2MHz 3. 4MHz 4. 8MHz 5. 16MHz 6. 20MHz</td>
</tr>
<tr>
<td>4</td>
<td>High Crystal Oscillator 外部高频振荡器</td>
<td>1. 8MHz > F_HOSC > 6MHz 2. 10MHz > F_HOSC ≥ 8MHz 3. 12MHz > F_HOSC ≥ 10MHz 4. 16MHz > F_HOSC ≥ 12MHz 5. 20MHz > F_HOSC ≥ 16MHz 6. 20MHz</td>
</tr>
<tr>
<td>5</td>
<td>Instruction Clock 指令时钟</td>
<td>1. 2 oscillator period 2 个振荡周期 2. 4 oscillator period 4 个振荡周期</td>
</tr>
<tr>
<td>6</td>
<td>WDT 看门狗定时器</td>
<td>1. Watchdog Enable (Software control) 看门狗开启（软件控制） 2. Watchdog Disable (Always disable) 看门狗关闭（永远关闭）</td>
</tr>
<tr>
<td>7</td>
<td>WDT Event 看门狗定时器事件</td>
<td>1. Watchdog Reset 2. Watchdog Interrupt</td>
</tr>
<tr>
<td>8</td>
<td>Timer0 Source 定时器0时钟源</td>
<td>1. EX_CKI0 2. Low Oscillator (I_LRC/E_LXT) 低频振荡器 (I_LRC/E_LXT)</td>
</tr>
<tr>
<td>9</td>
<td>PA.5</td>
<td>1. PA.5 is I/O PA5 是 I/O 2. PA.5 is reset PA5 是复位</td>
</tr>
<tr>
<td>10</td>
<td>PA.7</td>
<td>1. PA.7 is I/O PA7 是 I/O 2. PA.7 is instruction clock output PA.7 是指令时钟输出</td>
</tr>
<tr>
<td>11</td>
<td>Startup Time 上电复位时间</td>
<td>1. 140us 2. 4.5ms 3. 18ms 4. 72ms 5. 288ms</td>
</tr>
<tr>
<td>12</td>
<td>WDT Time Base 看门狗定时器时基</td>
<td>1. 3.5ms 2. 15ms 3. 60ms 4. 250ms</td>
</tr>
<tr>
<td>13</td>
<td>LVR Setting LVR 开关设定</td>
<td>1. Register Control 寄存器控制 2. LVR Always On LVR 永远开启</td>
</tr>
<tr>
<td>14</td>
<td>LVR Voltage LVR 电压</td>
<td>1. 1.6V 2. 1.8V 3. 2.0V 4. 2.2V 5. 2.4V 6. 2.7V 7. 3.0V 8. 3.3V 9. 3.6V 10. 4.2V</td>
</tr>
<tr>
<td>15</td>
<td>VDD Voltage VDD 电压</td>
<td>1. 3.0V 2. 4.5V 3. 5.0V</td>
</tr>
<tr>
<td>16</td>
<td>Sink current (exclude PA5) 灌电流（包括 PA5）</td>
<td>1. Large 大灌电流 2. Normal 一般灌电流</td>
</tr>
<tr>
<td>17</td>
<td>Comparator Input pin select 比较器输入引脚选择</td>
<td>1. Enable 开启 2. Disable 关闭</td>
</tr>
<tr>
<td>18</td>
<td>Read Output Data 读取输出口数据</td>
<td>1. I/O Port I/O 口 2. Register 寄存器</td>
</tr>
<tr>
<td>19</td>
<td>E_LXT Backup Control E_LXT 强化起振开关设定</td>
<td>1. Auto Off 自动关闭 2. Register Off 寄存器关闭</td>
</tr>
<tr>
<td>20</td>
<td>EX_CK10 to Inst. Clock EX_CK10 到指令时钟</td>
<td>1. Sync 同步 2. Async 不同步</td>
</tr>
<tr>
<td>21</td>
<td>Startup Clock 上电时钟源</td>
<td>1. Fast (I_HRC/E_HXT/E_XT) 高速 2. Slow (I_LRC/E_LXT) 低速</td>
</tr>
<tr>
<td>22</td>
<td>Input Schmitt Trigger 输入施密特触发</td>
<td>1. Enable 开启 2. Disable (0.5VDD) 关闭</td>
</tr>
<tr>
<td>23</td>
<td>Input High Voltage (Vin) 输入高电压 (Vin)</td>
<td>1. 0.7VDD 2. 0.5VDD</td>
</tr>
<tr>
<td>项目</td>
<td>名称</td>
<td>选项</td>
</tr>
<tr>
<td>------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>24</td>
<td>Input Low Voltage (VIL)</td>
<td>1. 0.3VDD</td>
</tr>
<tr>
<td>25</td>
<td>PWM2 output PWM2 输出</td>
<td>1. PA4</td>
</tr>
<tr>
<td>26</td>
<td>PWM4 output PWM4 输出</td>
<td>1. PA3</td>
</tr>
</tbody>
</table>

表 37 配置字节
6. 电气特性

6.1 最大绝对值

<table>
<thead>
<tr>
<th>符号</th>
<th>参数</th>
<th>额定值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD} - V_{SS}</td>
<td>工作电压</td>
<td>-0.5 ~ +6.0</td>
<td>V</td>
</tr>
<tr>
<td>V_{IN}</td>
<td>输入电压</td>
<td>V_{SS}-0.3V ~ V_{DD}+0.3</td>
<td>V</td>
</tr>
<tr>
<td>T_{OP}</td>
<td>工作温度</td>
<td>-40 ~ +85</td>
<td>°C</td>
</tr>
<tr>
<td>T_{ST}</td>
<td>储存温度</td>
<td>-40 ~ +125</td>
<td>°C</td>
</tr>
</tbody>
</table>

6.2 直流电气特性

(所有参考F_{INST}=F_{HOSC}/4，F_{HOSC}=16MHz@I_{HRC}，WDT 开启，环境温度 T_{A}=25°C。除其他指定说明外。)

<table>
<thead>
<tr>
<th>符号</th>
<th>参数</th>
<th>V_{DD}</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>V_{DD}</td>
<td>工作电压</td>
<td>3.3</td>
<td>2.2</td>
<td>2.7</td>
<td>2.0</td>
<td>5.5 V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1.8</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>V_{IH}</td>
<td>输入高电平</td>
<td>5V</td>
<td>4.0</td>
<td>--</td>
<td>--</td>
<td>V RSTb (0.8 V_{DD})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>2.4</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>3.5</td>
<td>--</td>
<td>--</td>
<td>V 所有I/O引脚，EX_CKIO/1, INT0/1 CMOS 选项 (0.7 V_{DD})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>2.1</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>2.5</td>
<td>--</td>
<td>--</td>
<td>V 所有I/O引脚，EX_CKIO/1 TTL 选项 (0.5 V_{DD})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>1.5</td>
<td>--</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>V_{IL}</td>
<td>输入低电平</td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>1.0</td>
<td>V RSTb (0.2 V_{DD})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>1.5</td>
<td>V 所有I/O引脚，EX_CKIO/1, INT0/1 CMOS 选项 (0.3 V_{DD})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>0.9</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>0.9</td>
<td>V 所有I/O引脚，EX_CKIO/1 TTL 选项 (0.2 V_{DD})</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>0.6</td>
<td></td>
</tr>
<tr>
<td>I_{OH}</td>
<td>输出高推电流 (小电流)</td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>18</td>
<td>mA V_{OH}=4.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>10</td>
<td>V_{OH}=2.0V</td>
</tr>
<tr>
<td>I_{OL}</td>
<td>输出低灌电流 (大电流)</td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>40</td>
<td>mA V_{OL}=1.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>25</td>
<td></td>
</tr>
<tr>
<td>I_{OL}</td>
<td>输出低灌电流 (一般电流)</td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>26</td>
<td>mA V_{OL}=1.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>16</td>
<td></td>
</tr>
<tr>
<td>I_{IR}</td>
<td>IR 灌电流</td>
<td>5V</td>
<td>--</td>
<td>--</td>
<td>43</td>
<td>mA V_{OL}=1.0V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>--</td>
<td>28</td>
<td></td>
</tr>
<tr>
<td>符号</td>
<td>参数</td>
<td>V_{DD}</td>
<td>最小值</td>
<td>典型值</td>
<td>最大值</td>
<td>单位</td>
</tr>
<tr>
<td>-----</td>
<td>------</td>
<td>--------</td>
<td>------</td>
<td>-------</td>
<td>------</td>
<td>------</td>
</tr>
<tr>
<td>IOP</td>
<td>工作电流</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>1.7</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>0.7</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>1.4</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>0.5</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>1.6</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>0.6</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>1.3</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>0.5</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>1.1</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>0.3</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>ISTB</td>
<td>待机电流</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>3.8</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>2.6</td>
<td>--</td>
<td>mA</td>
</tr>
<tr>
<td>IHALT</td>
<td>睡眠电流</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>85</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>85</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td>R_{PH}</td>
<td>上拉电阻</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>50</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>100</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>5V</td>
<td>--</td>
<td>85</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3V</td>
<td>--</td>
<td>85</td>
<td>--</td>
<td>$\text{K}\Omega$</td>
</tr>
<tr>
<td>R_{PL}</td>
<td>下拉电阻</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

正常模式

慢速模式
6.3 OSC电气特性
（测量条件VDD电压，TA温度等于编程条件）

<table>
<thead>
<tr>
<th>参数</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>烧录座的 I_HRC 偏差</td>
<td>±1 %</td>
<td></td>
<td></td>
<td></td>
<td>直接将烧录座装在Writer上。</td>
</tr>
<tr>
<td>烧录机台的 I_HRC 偏差</td>
<td>±3 %</td>
<td></td>
<td></td>
<td></td>
<td>正确设置烧录机台。</td>
</tr>
<tr>
<td>烧录机台的 I_LRC 偏差</td>
<td>±5 %</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

6.4 比较器/LVD电气特性
(VDD=5V, VSS=0V, TA=25°C 除其他指定说明外)

<table>
<thead>
<tr>
<th>符号</th>
<th>参数</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIVR</td>
<td>比较器输入电压范围</td>
<td>0</td>
<td>--</td>
<td>5 V</td>
<td></td>
<td>F_HOSC=1MHz</td>
</tr>
<tr>
<td>TENO</td>
<td>比较器启动等待时间</td>
<td>--</td>
<td>20 us</td>
<td>--</td>
<td></td>
<td>F_HOSC=1MHz</td>
</tr>
<tr>
<td>ICO</td>
<td>比较器电流消耗</td>
<td>--</td>
<td>135 uA</td>
<td>--</td>
<td></td>
<td>F_HOSC=1MHz, P2V mode</td>
</tr>
<tr>
<td>ILVD</td>
<td>LVD电流消耗</td>
<td>--</td>
<td>150 uA</td>
<td>--</td>
<td></td>
<td>F_HOSC=1MHz, LVD=4.3V</td>
</tr>
<tr>
<td>ELVD</td>
<td>LVD电压误差</td>
<td>--</td>
<td>--</td>
<td>3 %</td>
<td></td>
<td>F_HOSC=1MHz, LVD=4.3V</td>
</tr>
</tbody>
</table>

6.5 ADC电气特性
(VDD=5V, VSS=0V, TA=25°C 除其他指定说明外)

<table>
<thead>
<tr>
<th>符号</th>
<th>参数</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
<th>条件</th>
</tr>
</thead>
<tbody>
<tr>
<td>VREFH</td>
<td>模拟参考电压范围</td>
<td>2 V</td>
<td>--</td>
<td>VDD</td>
<td>V</td>
<td>外部参考电压</td>
</tr>
<tr>
<td>VREF4</td>
<td>内部参考电压 4V, VDD=5V</td>
<td>3.96</td>
<td>4</td>
<td>4.04 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREF3</td>
<td>内部参考电压 3V, VDD=5V</td>
<td>2.97</td>
<td>3</td>
<td>3.03 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREF2</td>
<td>内部参考电压 2V, VDD=5V</td>
<td>1.98</td>
<td>2</td>
<td>2.02 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>VREF</td>
<td>内部参考电压VDD, VDD=5V</td>
<td>--</td>
<td>VDD</td>
<td>--</td>
<td></td>
<td>最小供电电压</td>
</tr>
<tr>
<td>ADC</td>
<td>模拟输入电压</td>
<td>0</td>
<td>--</td>
<td>VREFH</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>IOP(ADC)</td>
<td>ADC 电流消耗</td>
<td>--</td>
<td>0.5</td>
<td>--</td>
<td>mA</td>
<td></td>
</tr>
<tr>
<td>ADCLK</td>
<td>ADC 时钟频率</td>
<td>32K</td>
<td>--</td>
<td>1M Hz</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ADCYCLE</td>
<td>ADC 转换时间周期</td>
<td>16</td>
<td>--</td>
<td>1/ADCLK</td>
<td>SHCLK=2 ADC clock</td>
<td></td>
</tr>
<tr>
<td>ADCsample</td>
<td>ADC 转换率</td>
<td>--</td>
<td>--</td>
<td>125 K/sec</td>
<td>VDD=5V</td>
<td></td>
</tr>
<tr>
<td>DNL</td>
<td>非线性微分误差</td>
<td>±1</td>
<td>--</td>
<td>--</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>INL</td>
<td>非线性积分误差</td>
<td>±2</td>
<td>--</td>
<td>--</td>
<td>LSB</td>
<td></td>
</tr>
<tr>
<td>NMC</td>
<td>无偏差分辨率</td>
<td>10</td>
<td>11</td>
<td>12 Bits</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

```
6.6 特性曲线图

6.6.1 高速 RC 振荡频率 (I_HRC) 及低速 RC 振荡频率 (I_LRC) 与电源电压 (VDD) 曲线图

6.6.2 高速 RC 振荡频率 (I_HRC) 与温度曲线图
6.6.3 低速 RC 振荡频率(I_LRC)与温度曲线图

6.6.4 内部参考电压 LDO 与温度曲线图
6.6.5 内部上拉电阻与电源电压(VDD)曲线图

6.6.6 VIH/VIL 与电源电压(VDD)曲线图
6.7 建议工作电压

建议工作电压（温度范围：-40 °C ~ +85 °C）

<table>
<thead>
<tr>
<th>频率</th>
<th>最小电压</th>
<th>最大电压</th>
<th>LVR：默认值 (25°C)</th>
<th>LVR：建议值 (-40°C ~ +85°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>20M/2T</td>
<td>3.3V</td>
<td>5.5V</td>
<td>3.6V</td>
<td>3.6V</td>
</tr>
<tr>
<td>16M/2T</td>
<td>3.0V</td>
<td>5.5V</td>
<td>3.3V</td>
<td>3.6V</td>
</tr>
<tr>
<td>20M/4T</td>
<td>2.2V</td>
<td>5.5V</td>
<td>2.4V</td>
<td>2.7V</td>
</tr>
<tr>
<td>16M/4T</td>
<td>2.0V</td>
<td>5.5V</td>
<td>2.2V</td>
<td>2.4V</td>
</tr>
<tr>
<td>8M(2T or 4T)</td>
<td>2.0V</td>
<td>5.5V</td>
<td>2.2V</td>
<td>2.4V</td>
</tr>
<tr>
<td>≤6M(2T or 4T)</td>
<td>1.8V</td>
<td>5.5V</td>
<td>2.0V</td>
<td>2.2V</td>
</tr>
</tbody>
</table>
6.8 LVR电压与温度曲线图

6.9 LVD电压与温度曲线图
6.10 LDO与温度曲线图

7. 晶圆脚位图
8. 封装尺寸

8.1 8 引脚 SOP（150 毫寸）

注意：8 引脚 SOP，每管 100 颗。

<table>
<thead>
<tr>
<th></th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>A</td>
<td>0.183</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>0.144</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>0.068</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>0.010</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>0.015</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.050 BSC</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td>0.007</td>
<td>-</td>
</tr>
<tr>
<td>K</td>
<td>0.005</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>0.189</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>8°</td>
</tr>
<tr>
<td>P</td>
<td>0.226</td>
<td>-</td>
</tr>
</tbody>
</table>

8.2 14 引脚 SOP（150 毫寸）

注意：14 引脚 SOP，每管 50 颗。

<table>
<thead>
<tr>
<th></th>
<th>INCHES</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN</td>
<td>TYP</td>
</tr>
<tr>
<td>A</td>
<td>0.337</td>
<td>-</td>
</tr>
<tr>
<td>B</td>
<td>0.144</td>
<td>-</td>
</tr>
<tr>
<td>C</td>
<td>0.068</td>
<td>-</td>
</tr>
<tr>
<td>D</td>
<td>0.017</td>
<td>-</td>
</tr>
<tr>
<td>E</td>
<td>0.016</td>
<td>-</td>
</tr>
<tr>
<td>F</td>
<td></td>
<td></td>
</tr>
<tr>
<td>G</td>
<td>0.050 BSC</td>
<td>-</td>
</tr>
<tr>
<td>J</td>
<td></td>
<td>0.004</td>
</tr>
<tr>
<td>K</td>
<td>0.005</td>
<td>-</td>
</tr>
<tr>
<td>L</td>
<td>0.189</td>
<td>-</td>
</tr>
<tr>
<td>M</td>
<td></td>
<td>8°</td>
</tr>
<tr>
<td>R</td>
<td>0.226</td>
<td>-</td>
</tr>
</tbody>
</table>
8.3 16 引脚 SOP (150 毫寸)

注意：16 引脚 SOP，每管 50 颗。

9. 订购信息

<table>
<thead>
<tr>
<th>产品名称</th>
<th>封装类型</th>
<th>引脚数</th>
<th>封装尺寸</th>
<th>配送方式</th>
</tr>
</thead>
<tbody>
<tr>
<td>NY8B062E</td>
<td>Die</td>
<td>--</td>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>NY8B062ES8</td>
<td>SOP</td>
<td>8</td>
<td>150 mil</td>
<td>卷带：每卷 2.5K。管装：每管 100 颗。</td>
</tr>
<tr>
<td>NY8B062ES14</td>
<td>SOP</td>
<td>14</td>
<td>150 mil</td>
<td>卷带：每卷 2.5K。管装：每管 50 颗。</td>
</tr>
<tr>
<td>NY8B062ES16</td>
<td>SOP</td>
<td>16</td>
<td>150 mil</td>
<td>卷带：每卷 2.5K。管装：每管 50 颗。</td>
</tr>
</tbody>
</table>

注意：16 引脚 SOP，每管 50 颗。