

NX1 系列 IC 使用 SPI Flash 應用需知

內容: 說明 NX1 使用 SPI Flash 開發及應用時的限制條件與狀況。


1. NX1燒錄工具

- 1-1. 目前硬體燒錄工具有容量限制,NX_Programmer燒錄SPI Flash容量上限為256Mbits,限搭配NX1_FDB。若SPI FLASH 256Mbits 搭配NX1 series IC,目前必須使用Smart_Writer Ver.A搭配Q-Writer 4.30 Beta SPI Flash(XMC) 256M [Build 200916.00]才能進行燒錄,且只供線上開發燒錄用,離線生產燒錄暫時不支援。若需要燒錄更大的容量的SPI Flash,請使用第三方燒錄工具。
- 1-2. NX1 series IC 四線通訊接SPI Flash, 因SPI Flash /WP與/HOLD這兩根腳位狀態依各家廠牌設計會有差異與不同,有些廠牌可能導致燒錄失敗或者讀寫錯誤發生,避免上述情況發生,建議必須接上拉電壓SPI0_VDD,示意圖如下。

1-3. NX12FS51A / NX13FS51A 六線通訊接SPI Flash,第一次進行在板燒錄(ICP),而SPI Flash也未曾設置過QE bit(開啟Quad mode設定),而NX12FS51A / NX13FS51A於燒錄模式中會將PB4與PB5設定為floating,此時搭配某些廠牌SPI Flash時會通訊失敗,進而導致燒錄失敗,為避免廠牌差異,必須將/WP(IO2)與/HOLD(IO3)接上拉電阻以避免此錯誤情況發生,示意圖如下。

1

Ver 1.20 2023/12/14

2. NX1開發工具

2-1. NX1_FDB的SPI Flash可以支援的最大容量為256Mbits,目前256Mbits只支援Winbond W25Q256FV。其中容量最後1Mbits會保留給NX1 EV chip模擬OTP ROM,因此NX1_FDB的SPI FLASH實際可開發應用需扣除1Mbits。

注意:N25Q系列SPI Flash在NX1_FDB Ver.B 2018/8/6以後、Ver.C 2020/5/8以前的版本為特殊貼牌,實際容量為IC上文字所述的兩倍容量。

- 2-2. NX1_FDB Ver.B 2018/08/06以前版本的EV chip在上電開機時會以Quad mode執行一段boot code,為了符合 NX1_FDB開機時序,因此,更換SPI Flash時需注意是否支援Quad mode。
- 2-3. NX11P2xAB開發板只支援Single與Dual mode,不支援Quad mode,NX11P2xAB上SPI Flash的WP與Hold兩pin沒有接到PB4與PB5,而是連接到SPI0_VDD拉High,因此程式開發設定需注意,若選擇了Quad mode,會發生溝通失敗。

3. 程式開發

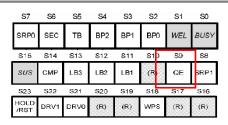
3-1. SPI Flash QE bit設置方法在每一個廠牌的Status register會有差異,若建置並支援所有SPI FLASH廠牌於系統會導致佔用較多資源,所以當C_Module或Q-Code設置為1-4-4(Quad mode)時,程式內預設QE bit只支援Nyquest N25Q系列(Mfr ID:0x20,0x1F)、Winbond(Mfr ID:0xEF)、PUYA(Mfr ID:0x85)與MXIC(Mfr ID:0xC2)。若更換SPI Flash,會無法使用Quad mode,在Q-Code會無法開機成功,需手動設定QE bit。手動設定QE bit 方法如下範例。

例: Q-Code可以於 "Before_PowerOn" Path讀寫SPI Flash status register來設定QE bit:

SPI_WRSR(VAR8 reg,VAR32 data, VAR8 len)

SPI_RDSR(VAR8 reg, VAR16 data)

以Winbond為例, QE bit有兩種設置方式:


A). **Before_PowerOn**: SPI_WRSR(0x31,0x2),SPI_RDSR(0x35,ReadSts2)

S7	S6	S5	S4	S3	S2	S1	S0
SRP0	SEC	ТВ	BP2	BP1	BP0	WEL	BUSY
\$15	S14	S 13	\$12	S11	S10	S9	S8
sus	СМР	LB3	LB2	LB1	(R)	QE	SRP1
S23	522	S21	S20	S19	S18	317	S16
HOLD /RST	DRV1	DRV0	(R)	(R)	WPS	(R)	(R)

Data Input Output	Byte 1	Byte 2
Clock Number	(0 - 7)	(8 – 15)
Read Status Register-1	05h	(S7-S0) ⁽²⁾
Write Status Register-1 ⁽⁴⁾	01h	(S7-S0) ⁽⁴⁾
Road Status Rogistor 2	35h	(S15 S8) ⁽²⁾
Write Status Register-2	31h	(S15-S8)
Read Status Register-3	15h	(S23-S16) ⁽²⁾
Write Status Register-3	11h	(S23-S16)

B). **Before_PowerOn**: SPI_WRSR(0x1,0x200,2),SPI_RDSR(0x35,ReadSts2)

Command Name	Byte 1	Byte 2	Byte 3
Read Status Register	05H	(S7-S0)	
Read Status Register-1	35H	(S15-S8)	
Write Status Register	01H	S7-S0	S15-88

以MXIC為例:

Before_PowerOn: SPI_WRSR(0x1,0x40),SPI_RDSR(0x15,ReadSts2)

bit7	bit6	bit5	bit4	bit3	bit2	bit1	bit0
SRWD (Status Register Write Disable)	QE (Quad Enable)	BP3 (level of protected block)	BP2 (level of protected block)	BP1 (level of protected block)	BP0 (level of protected block)	WEL (write enable latch)	WIP (write in progress bit)

3-2 Q-Code與C_Module在IC Body選擇NX11PxxA或者NX11M2xA,進入休眠模式(Halt mode)時會對SPI Flash 下Deep power down指令並將SPI0_VDD的供電關閉以減少耗電,喚醒時會開啟電源,然後再下release deep power down指令。開啟電源時,電壓會有一段爬升時間,每一個SPI Flash有各自可讀取的工作電壓,SPI0_VDD 電源爬升至SPI Flash可讀寫的工作電壓時間不同,以下圖Winbond W25Q64FV為例,約為5ms,Q-Code與 C_Module程式中作15ms delay,大多數的SPI Flash皆可足夠release deep power down模式,但SPI Flash廠 牌很多,若有更換SPI Flash需留意。

PARAMETER	SYMBOL	SPEC		
PARAMETER	STIVIBUL	MIN	MAX	UNIT
VCC (min) to /CS Low	tvsL	20		μs
Time Delay Before Write Instruction	tpuw	5		ms
Write Inhibit Threshold ∀oltage	Vwi	1.0	2.0	V

Note:

These parameters are characterized only.

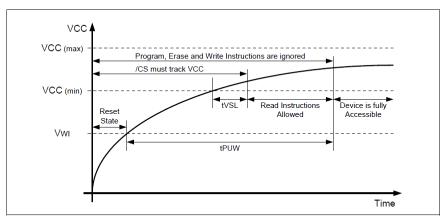


Figure 58. Power-up Timing and Voltage Levels

- 3-3. XIP(eXecute In Place)與XIP COC(Common OTP Code)功能,因為處理速度,必須使用Quad mode(1-4-4)。
- 3-4. VR(Voice Recognition語音辨識)應用,因為處理速度,建議使用Quad mode (1-4-4)。