
NYC_NY8

NYC_NY8L

C Compiler for NY8L series

Version 1.2
Feb. 19, 2025
NYQUEST TECHNOLOGY CO., Ltd. reserves the right to change this document without prior notice. Information provided by NYQUEST is believed to be accurate and
reliable. However, NYQUEST makes no warranty for any errors which may appear in this document. Contact NYQUEST to obtain the latest version of device specifications

before placing your orders. No responsibility is assumed by NYQUEST for any infringement of patent or other rights of third parties which may result from its use. In addition,

NYQUEST products are not authorized for use as critical components in life support devices/systems or aviation devices/systems, where a malfunction or failure of the product
may reasonably be expected to result in significant injury to the user, without the express written approval of NYQUEST.

U
ser M

anual

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 2

Table of Contents

1 Introduction .. 3

1.1 Outline of the manual ... 3

1.2 System Requirements .. 3

1.3 The Installation of NYC_NY8 .. 3

2 Use NYC_NY8L .. 4

2.1 Use NYC_NY8L through NYIDE... 4
2.1.1 Create New Project ... 4
2.1.2 Build .. 4

3 Syntax and Usage .. 5

3.1 Standard C Syntax ... 5
3.1.1 Comment ... 5
3.1.2 Data Type .. 5

3.2 Extended Syntax .. 6
3.2.1 Reserved Word ... 6
3.2.2 Interrupt Service Routine .. 6
3.2.3 Interrupt Service Routine Uses Assembly Language ... 7
3.2.4 Register Address Definition ... 8
3.2.5 Read and Write specified address .. 8
3.2.6 Inline Assembly ... 8

3.3 System Header File .. 8
3.3.1 Special Command Macro .. 9
3.3.2 Special Function Register ... 9

3.4 Option .. 9

3.5 Development Process .. 10

3.6 Suggestion ... 10

4 Revision History ... 11

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 3

1 Introduction
NYC_NY8L is the C Compiler for Nyquest 8-bit MCU “NY8L series”. NYC_NY8L is called by the upper level

development tools NYIDE to compile C program into assembly, NYASM Assembler will then assemble and link

the object files to generate .bin file, which is used to download to the board or program to OTP IC.

1.1 Outline of the manual

1. Introduction

This chapter explains the role NYC_NY8L plays and the basic requirements for the installation of

NYC_NY8L.

2. Use NYC_NY8L

How to use NYC_NY8L through NYIDE.

3. Syntax and usage

Introduce the syntax and usage of NYC_NY8L.

1.2 System Requirements

 A PC equipped with Pentium 1.3GHz or higher CPU, Windows 7/ 8/ 10/ 11.

 At least 2G SDRAM.

 At least 2G free space on the hard disk.

 Visual C++ 2015-2022 Redistributable (32bit).

1.3 The Installation of NYC_NY8

Please contact Nyquest Technology to obtain the latest installation program. Double click the execution icon

to activate installation wizard, and follow the instructions to complete the installation process. Visual C++

2015 Redistributable (32bit) is required to run NYC_NY8L. If Visual C++ 2015-2022 Redistributable (32bit) is

not installed on your computer, it will be downloaded automatically. It requires internet connection when

downloading, and if no internet is connected and fails to download, you may visit Microsoft website to

download Visual C++ 2015-2022 Redistributable (32bit) afterwards and install.

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 4

2 Use NYC_NY8L
After finishing a program in NY8L software development tool - NYIDE, pressing Build in the NYIDE menu will

automatically search for installed NYC_NY8L to compile and link. The procedures for using NYC_NY8L in

NYIDE are described below.

2.1 Use NYC_NY8L through NYIDE

NYIDE is an integrated tool provided by Nyquest for developing application of NY4 / 5 / 6 / 7 / 8 / 9T / 9UB /

NX1 series microcontroller. The main purpose is to provide a platform for programming with Assembly

language and C language, as well as build and strong debug functions. When using NYIDE to develop NY8L

projects, NYIDE will automatically search for installed NYC_NY8L tool chain on computer for building and

debugging. The following is an introduction of using NYIDE to develop NY8 projects. More detailed

operations please refer to the NYIDE user manual.

2.1.1 Create New Project

Open NYIDE, and select New Project. In the New Project window, choose C on the Categories and

select NY8L. Specify project name and type, then press “Create”, and NYIDE will automatically

generate the necessary files.

2.1.2 Build

When user selects the Build / Build Solution menu (or press the shortcut

key F7) on the NYIDE main screen, NYC_NY8L will be called to perform

the build action. If it is successfully built, the .bin file will be generated in

the project directory for downloading or programming.

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 5

3 Syntax and Usage
NYC_NY8L supports standard ANSI C89 syntax, and adds some specific syntax for NY8L series IC.

3.1 Standard C Syntax

NYC_NY8L supports standard ANSI C89 syntax. For more detailed regarding language definitions, please

refer to: Standard ISO/IEC 9899 (http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899).

3.1.1 Comment

There are 2 forms of Comment. The single line comment begins with double slash, and the multi-line

comment begins with /* and ends with */.

Example:

// single line comment

/*

Multi line comment

*/

3.1.2 Data Type

The following table is the basic data types and the data range of NYC_NY8L.

Type Length Range

char 1 byte 0 ~ 255

signed char 1 byte -128 ~ 127

short 2 bytes -32768 ~ 32767

unsigned short 2 bytes 0 ~ 65535 (0xFFFF)

int 2 bytes -32768 ~ 32767

unsigned int 2 bytes 0 ~ 65535 (0xFFFF)

long 4 bytes -2147483648 ~ 2147483647

unsigned long 4 bytes 0 ~ 4294967295 (0xFFFFFFFF)

http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 6

3.2 Extended Syntax

3.2.1 Reserved Word

All reserved words are listed below, and the user-defined symbols can not be the same as the reserved

words.

__Pragma __near__ else near unsigned

__AX__ asm enum register void

__A__ auto extern restrict volatile

__EAX__ break far return while

__X__ case fastcall short

__Y__ cdecl float signed

__asm__ char for sizeof

__attribute__ const goto static

__cdecl__ continue if struct

__far__ default inline switch

__fastcall__ do int typedef

__inline__ double long union

3.2.2 Interrupt Service Routine

There are multiple interrupts in NY8L series, and every interrupt has a 16-bit vector, that is a pointer, to

store the interrupt service routine (ISR). When interrupt occurs, the current program needs to be

suspended and the current system state is saved, for example, three registers X, Y, and A. Then find

the corresponding interrupt vector according to the type of interrupt, obtain the address of the interrupt

service routine, and execute the interrupt service routine. After the ISR is serviced, the status is

recovered and is returned to the previously suspended program with a RTI instruction. In C program,

simply use INTERRUPT_XXX attribute to define an interrupt service routine, and NYC_NY8L will

automatically generate the necessary code to save the status and store the interrupt service program

address in the interrupt vector. The following sample program demonstrates how to create TM1

interrupt service routine.

#include <ny8l.h>

void tm1_isr(void) INTERRUPT_TM1 {

 INTF = ~C_INTF_TM1_Flag;

}

The list of available function attributes is as follows. The original definition of the attribute can be found

in the include/ny8l_common.h file of installation directory.

INTERRUPT_TM2 INTERRUPT_TM1 INTERRUPT_TM0 INTERRUPT_FT

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 7

INTERRUPT_ST INTERRUPT_EXT INTERRUPT_ADC INTERRUPT_KSB
INTERRUPT_NMI INTERRUPT_BRK

NYC_NY8L supports INTERRUPT_XXX attribute for interrupt service routines above 1.10. Prior to 1.10,

users have to write assembly in a built-in vector.s file to define interrupt vectors. When the project

developed by the old version NYC_NY8L is moved to version 1.10 or later, must be aware that not to

redefine INTERRUPT_XXX attribute. For example, if INTERRUPT_TM1 is defined, you must delete the

corresponding definition in vector.s file to avoid conflicts. It is recommended to delete the vector.s file

and use C's attributes only, if you use one of the attributes. Interrupt vector can choose to use assembly

or C language function attributes above version 1.10, but it is recommended to use one of them instead

of two.

3.2.3 Interrupt Service Routine Uses Assembly Language

In the C language project, assembly language file with a .s file extension can be used, and an interrupt

service routine can also be written using assembly language. Below is an example of assembly

language that provides TM2 interrupt service routines.

 .export Vector_tm2

 .import ___exit_isr_pop_axy

.segment "CODE"

Vector_tm2:

 phy

 phx

 pha

 lda #$FE

 sta _INTF

 jmp ___exit_isr_pop_axy

In the above example, the export symbol Vector_tm2 is the name of the interrupt service routine

specified by the built-in function library. If the name does not match, the compiler cannot define the

interrupt service routine address to the interrupt vector. The list of interrupt service routine names is as

follows:

Vector_tm2 Vector_tm1 Vector_tm0 Vector_ft
Vector_st Vector_ext Vector_adc Vector_ksb
Vector_nmi Vector_brk

The import symbol __exit_isr_pop_axy is a function provided by the built-in function library, which

restores the system state and returns the address before the interrupt. The contents are as follows:

___exit_isr_pop_axy:

 pla

 plx

 ply

 rti

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 8

3.2.4 Register Address Definition

All registers of NY8L IC have been defined in the header file ”NY8L.h” in “include” directory of the

installation folder. It is recommended to use the header file directly, which will save the efforts to define

special registers.

3.2.5 Read and Write specified address

The way to read the absolute address memory is to write the address as the immediate value and

convert to an pointer, and then dereference it. For example, the following example program reads 2-

byte int at the absolute address 0x7F0 and 0x7F1.

uint16_t value = (*(uint16_t*)0x7f0);

The method of writing to the absolute address register is similar. The following example program writes

the value 0x12 to the memory address 0x80.

(uint8_t)0x80 = 0x12;

The type of pointer decides the size of data to be accessed.

3.2.6 Inline Assembly

The assembly can be embedded in the C language, use the keyword "__asm__" to insert any

assembly programs.

Example:

__asm__(“nop”);

If you need to use C-defined variables in the assembly language, please use %v to format the text.

Example:

__asm__(“lda %v”, my_var);

As the assembly codes generated by C codes are affected by optimization, so are Inline assembly

codes. There is no way to exclude the inline assembly code from optimization, but only to choose

whether the entire function will be optimized. If optimization causes some unexpected result, please use

the volatile keyword after __asm__ to keep it from being optimized.

Example:

__asm__ volatile("lda #0");

3.3 System Header File

The “include” folder in the NYC_NY8L installation directory has C header files for all NY8L IC. This section

describes the contents of these header files and how to use them.

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 9

3.3.1 Special Command Macro

The ny8lcommon.h file defines commonly used assembly macros that control IC behavior in a

lower-level, and user can call these macros at the proper time.

Macro Description

CLI() Enable interrupt.

SEI() Disable interrupt.

CLRWDT() Clear the watch dog timer.

SLEEP() Sleep.

ROM_BANK(addr) Get the value of (addr >> 16) & 0xFF(bank address)

3.3.2 Special Function Register

The ny8l_common.h file defines the name of Special Function Register (SFR) that users can use them

to access SFR. However, it is not recommended that users directly refer to ny8l_common.h. It is

recommended to use the header file NY8L.h instead. The user should not change the NYC_NY8L file

because the file must correspond to the name in the built-in library. Changing this file will cause the link

process fails.

3.4 Option

Using NYIDE to develop a C language project, there are several project build options can be set. These

options can control the compiler, assembler and linker behavior. User can select the Project / Project

Settings on Menu to open the setting interface.

 Generate ASM listing file: The listing file named *.lst will be produced after assembling, deselecting this

option can speed up the compiling speed.

 Generate listing file: The listing file named *.link.lst will be produced after linking. This file is the

disassembled result of the final .bin file. Deselecting this option can speed up the

compiling speed.

 Generate map file: The listing file named *.map will be produced after linking. This file contains address

assignment information. Deselecting this option can speed up the compiling speed.

 Optimization: Optimize the generated code. Compiling C language into optimization of assembly

language can produce more streamlined code.

 Clear RAM to zero on startup: Set all memory to 0 after power on and before entering into the user's

main function.

 Intermediate Directory: The directory for saving intermediate files.

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 10

 ASM include path: Set the search path for .s file inclusion. The default path is the “asminc” folder of the

project root directory and the NYC_NY8L installation directory. User can add a

custom path.

 Include path: Set the search path for the C include header file. The default path is the “include” folder of

the project root directory and the NYC_NY8L installation directory. User can add a custom

path.

3.5 Development Process

Use NYIDE to write the C language program and set the configuration file ".cb" required for the project.

NYIDE will automatically call NYC_NY8L to generate the assembly file ".s" when building and then call the

ca65.exe to assemble the assembly code ld65.exe and the configuration file nybinpack.exe to produce the

final .bin file. Finally, user can use the Q-Writer to burn the .bin file to IC.

3.6 Suggestion

Some suggestions for developing C language projects are listed below.

 Try to use unsigned variables. In some operations which do not judge plus or minus, it will be faster.

 Do not use constants and variables interactively in the expression, intensively using the constants will

have an optimized code.

Eg. "1 + a + 2" is a bad coding style, as 1 and 2 can not be calculated while compiling. It is

recommended to write "a+1+2", for 1+2 can be calculated while compiling, and it only needs to

calculate "a+3" in the execution.

 NYC_NY8L User Manual

Ver. 1.2 2025/02/19 11

4 Revision History

Version Date Description Modified Page

1.0 2018/05/31 Formal release. -

1.1 2018/07/03 Modify ISR using method. 6, 7

1.2 2025/02/19 Update the system requirements. 3

	1 Introduction
	1.1 Outline of the manual
	1.2 System Requirements
	1.3 The Installation of NYC_NY8

	2 Use NYC_NY8L
	2.1 Use NYC_NY8L through NYIDE
	2.1.1 Create New Project
	2.1.2 Build

	3 Syntax and Usage
	3.1 Standard C Syntax
	3.1.1 Comment
	3.1.2 Data Type

	3.2 Extended Syntax
	3.2.1 Reserved Word
	3.2.2 Interrupt Service Routine
	3.2.3 Interrupt Service Routine Uses Assembly Language
	3.2.4 Register Address Definition
	3.2.5 Read and Write specified address
	3.2.6 Inline Assembly

	3.3 System Header File
	3.3.1 Special Command Macro
	3.3.2 Special Function Register

	3.4 Option
	3.5 Development Process
	3.6 Suggestion

	4 Revision History

